Study of Some Nuclear Properties of 170-178W Isotopes by Using Interacting Bosons Model-1

2021 ◽  
Vol 19 (10) ◽  
pp. 62-72
Author(s):  
Salar H. Ibrahem ◽  
Mohsin K. Al-Janaby

We looked into the structure of energy levels for some Tungsten isotopes W the (even-even) and electromagnetically probability transmission for it with the Model of Interacting Bosons type one (IBM-1) to evaluate the nuclear structure for Tungsten isotopes are investigated in this study (170-178W). The data was gathered using an IBM software written in the Fortran programming language The values of the parameters in this computation show that the characteristics of tungsten isotopes fall between the γ_ unstable limit O(6) and the rotational limit SU(3). The energy and branching ratios demonstrate this. The computed results are in very excellent agreement with experimental data for the isotopes under investigation.

2014 ◽  
Vol 23 (11) ◽  
pp. 1450070 ◽  
Author(s):  
Huda H. Kassim ◽  
Fadhil I. Sharrad

A description of the even–even Pt isotopes for A = 190 to 196 in the framework of the Interacting Boson Model (IBM-1) is carried out. Energy levels, B(E2) and B(M1) values, branching ratios, E2/M1 mixing ratios and QJ values of the above nuclei have been calculated. The energy levels, B(E2) values and the electric quadrupole moment QJ results are reasonably consistent with the experimental data. The magnetic dipole is compared with the available experimental data. Furthermore, the calculated results are better than previous studies.


1996 ◽  
Vol 05 (01) ◽  
pp. 153-173 ◽  
Author(s):  
L. LOSANO ◽  
H. DIAS

The structure of low-lying states in odd-mass N=83 isotones (135≤A≤151) is investigated in terms of a model in which one neutron-quasiparticle is coupled to quadrupolar and octupolar core-vibrations. Energy levels and spectroscopic factors are calculated and compared with experimental data. Nuclear Structure: 135 Te , 137 Xe , 139 Ba , 141 Ce , 143 Nd , 145 Sm , 147 Gd , 149 Dy , and 151 Er ; calculated levels J, π, and S. Quasiparticle-phonon coupling model.


2016 ◽  
Vol 10 (11) ◽  
pp. 181 ◽  
Author(s):  
Hussein H. Khudher ◽  
Ali K. Hasan ◽  
Fadhil I. Sharrad

In this work, the energy levels electromagnetic transition B(E2) and B(M1), branching ratios, mixing ratios and electric quadrupole moment of even-even 120-126Xe isotopes have been investigated using Interacting Boson Model (IBM-1). The results were compared with some previous experimental and theoretical values, it was seen that the obtained theoretical results are in agreement with the experimental data.


2020 ◽  
pp. 149-152

The energy states for the J , b , ɤ bands and electromagnetic transitions B (E2) values for even – even molybdenum 90 – 94 Mo nuclei are calculated in the present work of "the interacting boson model (IBM-1)" . The parameters of the equation of IBM-1 Hamiltonian are determined which yield the best excellent suit the experimental energy states . The positive parity of energy states are obtained by using IBS1. for program for even 90 – 94 Mo isotopes with bosons number 5 , 4 and 5 respectively. The" reduced transition probability B(E2)" of these neuclei are calculated and compared with the experimental data . The ratio of the excitation energies of the 41+ to 21+ states ( R4/2) are also calculated . The calculated and experimental (R4/2) values showed that the 90 – 94 Mo nuclei have the vibrational dynamical symmetry U(5). Good agreement was found from comparison between the calculated energy states and electric quadruple probabilities B(E2) transition of the 90–94Mo isotopes with the experimental data .


1983 ◽  
Vol 105 (1) ◽  
pp. 29-33 ◽  
Author(s):  
A. M. Clausing

Cavity solar receivers are generally believed to have higher thermal efficiencies than external receivers due to reduced losses. A simple analytical model was presented by the author which indicated that the ability to heat the air inside the cavity often controls the convective loss from cavity receivers. Thus, if the receiver contains a large amount of inactive hot wall area, it can experience a large convective loss. Excellent experimental data from a variety of cavity configurations and orientations have recently become available. These data provided a means of testing and refining the analytical model. In this manuscript, a brief description of the refined model is presented. Emphasis is placed on using available experimental evidence to substantiate the hypothesized mechanisms and assumptions. Detailed comparisons are given between analytical predictions and experimental results. Excellent agreement is obtained, and the important mechanisms are more clearly delineated.


Author(s):  
Elham Abdalrahem Bin Selim ◽  
Mohammed Hadi Al–Douh ◽  
Hassan Hadi Abdullah ◽  
Dahab Salim Al–Nohey

Two bis-Schiff Bases 1 and 2 are ligands that can coordinate with manganese metal to form stable complexes and have biological activity. Thermodynamic parameters, HOMO-LUMO energy levels and FTIR spectra of two ligands have been computed using B3LYP/6-311++G(d,p) functional of the DFT calculations. Both ligands are favored thermodynamically, and the ligand 1 has been shown to be more stable than ligand 2. The Polarizability values of two ligands have been investigated. The results refer that ligand 2 interacts earlier than ligand 1 to the metal ion. The FTIR spectra of two ligands have been evaluated. All results show the good agreement between the theoretical and experimental data.


2021 ◽  
Vol 46 (1) ◽  
Author(s):  
Hans Ryde

AbstractA chronicle describing the historical context and the development of ideas and experiments leading to the discovery of the back-bending phenomenon in rapidly rotating atomic nuclei some 50 years ago is presented. The moment of inertia of some atomic nuclei increases anomalously at a certain rotational frequency, revealing important clues to our understanding of nuclear structure. I highlight the decisive interactions and contacts between experimentalists and theorists, which created the right environment, allowing for the revelation of an undetected phenomenon in Nature. Finally, I reflect on the key points allowing for the discovery and particularly point to the importance of systematic surveys, which in this case investigated the energy levels in heavy nuclei of a large sample of elements, as well as to the accuracy of the measurements of the ground state levels made at the time.


2021 ◽  
Author(s):  
Wassim Habchi ◽  
Philippe Vergne

Abstract The current work presents a quantitative approach for the prediction of minimum film thickness in elastohydrodynamic lubricated (EHL) circular contacts. In contrast to central film thickness, minimum film thickness can be hard to accurately measure, and it is usually poorly estimated by classical analytical film thickness formulae. For this, an advanced finite-element-based numerical model is used to quantify variations of the central-to-minimum film thickness ratio with operating conditions, under isothermal Newtonian pure-rolling conditions. An ensuing analytical expression is then derived and compared to classical film thickness formulae and to more recent similar expressions. The comparisons confirmed the inability of the former to predict the minimum film thickness, and the limitations of the latter, which tend to overestimate the ratio of central-to-minimum film thickness. The proposed approach is validated against numerical results as well as experimental data from the literature, revealing an excellent agreement with both. This framework can be used to predict minimum film thickness in circular elastohydrodynamic contacts from knowledge of central film thickness, which can be either accurately measured or rather well estimated using classical film thickness formulae.


2005 ◽  
Vol 16 (06) ◽  
pp. 951-968 ◽  
Author(s):  
MENG ZHANG ◽  
BING-CONG GOU

Variational calculations are carried out with a multiconfiguration-interaction wave function to obtain the relativistic energies of the 1s2 2 ln l 1 S (m)(n =2–6, m1–5) states for the beryllium isoelectronic sequence (Z =4–10). Relativistic corrections and the mass polarization effects are evaluated with the first-order perturbation theory. The identifications of the energy levels for 1s2 2 ln l 1 S (m)(n =2–6, m1–5) states in the Be-like ions are reported. The oscillator strengths, transition rates and wavelengths are also calculated. The calculated results are compared with other theoretical and experimental data in the literature.


2021 ◽  
Vol 19 (5) ◽  
pp. 61-67
Author(s):  
Ali Khalaf Hasan ◽  
Dalal Naji Hameed

In the construction of this kind of shell model, we take the residual interaction to be modified surface delta interaction MSDI. We have studied the excitation energies of the 50Ca a nucleus, which contain two neutrons outside closed shell of the 48Ca. Neutrons are in the model space pfpg. The energy levels and angular momentum of all possible cases were investigated. Thereby, we have effectively utilized a theoretical process to find link among the traditional coupling angle and energy levels at different orbital within neutron - neutron interaction. We observe the energy stages appear to follow two overall functions which depend on the classical coupling angles but are unconstrained of angular momentum I. We find out that our results agree with the experimental data.


Sign in / Sign up

Export Citation Format

Share Document