scholarly journals Electronic Structure of Two New Bis-Schiff Base Ligands using DFT Method

Author(s):  
Elham Abdalrahem Bin Selim ◽  
Mohammed Hadi Al–Douh ◽  
Hassan Hadi Abdullah ◽  
Dahab Salim Al–Nohey

Two bis-Schiff Bases 1 and 2 are ligands that can coordinate with manganese metal to form stable complexes and have biological activity. Thermodynamic parameters, HOMO-LUMO energy levels and FTIR spectra of two ligands have been computed using B3LYP/6-311++G(d,p) functional of the DFT calculations. Both ligands are favored thermodynamically, and the ligand 1 has been shown to be more stable than ligand 2. The Polarizability values of two ligands have been investigated. The results refer that ligand 2 interacts earlier than ligand 1 to the metal ion. The FTIR spectra of two ligands have been evaluated. All results show the good agreement between the theoretical and experimental data.

2020 ◽  
pp. 149-152

The energy states for the J , b , ɤ bands and electromagnetic transitions B (E2) values for even – even molybdenum 90 – 94 Mo nuclei are calculated in the present work of "the interacting boson model (IBM-1)" . The parameters of the equation of IBM-1 Hamiltonian are determined which yield the best excellent suit the experimental energy states . The positive parity of energy states are obtained by using IBS1. for program for even 90 – 94 Mo isotopes with bosons number 5 , 4 and 5 respectively. The" reduced transition probability B(E2)" of these neuclei are calculated and compared with the experimental data . The ratio of the excitation energies of the 41+ to 21+ states ( R4/2) are also calculated . The calculated and experimental (R4/2) values showed that the 90 – 94 Mo nuclei have the vibrational dynamical symmetry U(5). Good agreement was found from comparison between the calculated energy states and electric quadruple probabilities B(E2) transition of the 90–94Mo isotopes with the experimental data .


2018 ◽  
Vol 4 (4) ◽  
pp. 51 ◽  
Author(s):  
Monotosh Mondal ◽  
Maharudra Chakraborty ◽  
Michael G. B. Drew ◽  
Ashutosh Ghosh

Three trinuclear Ni(II)-Na(I) complexes,[Ni2(L1)2NaCl3(H2O)]·H2O (1), [Ni2(L2)2NaCl3(H2O)] (2), and [Ni2(L3)2NaCl3(OC4H10)] (3) have been synthesized using three different NNO donor tridentate reduced Schiff base ligands, HL1= 2-[(3-methylamino-propylamino)-methyl]-phenol, HL2= 2-[(3-methylamino-propylamino)-methyl]-4-chloro-phenol, and HL3= 2-[(3-methylamino-propylamino)-methyl]-6-methoxy-phenol that had been structurally characterized. Among these complexes, 1 and 2 are isostructural in which dinuclearNi(II) units act as metalloligands to bind Na(I) ions via phenoxido and chlorido bridges. The Na(I) atom is five-coordinated, and the Ni(II) atom possesses hexacordinated distorted octahedral geometry. In contrast, in complex 3, two -OMe groups from the dinuclear Ni(II) unit also coordinate to Na(I) to make its geometry heptacordinated pentagonal bipyramidal. The magnetic measurements of complexes 1–3 indicate ferromagnetic interactions between dimeric Ni(II) units with J = 3.97 cm−1, 4.66 cm−1, and 5.50 cm−1for 1–3, respectively, as is expected from their low phenoxido bridging angles (89.32°, 89.39°, and 87.32° for 1–3, respectively). The J values have been calculated by broken symmetry DFT method and found to be in good agreement with the experimental values.


Author(s):  
Jean-David Peltier ◽  
Benoît Heinrich ◽  
Bertrand Donnio ◽  
Olzhas A. Ibraikulov ◽  
Thomas Heiser ◽  
...  

We report the influence of positional isomerism on the electronic (electrochemical HOMO/LUMO energy levels), photophysical and physical properties (molecular organization, crys¬¬tallinity and phase transitions) and charge transport properties of dispiroacridine-in¬da¬ce¬no¬bis¬thio¬phene...


Author(s):  
Chengfu Mu ◽  
Dali Zhang

Abstract We have investigated the low-lying energy spectrum and electromagnetic transition strengths in even-even $^{76}$Se using the proton-neutron interacting boson model (IBM-2). The theoretical calculation for the energy levels and $E2$ and $M1$ transition strengths is in good agreement with the experimental data. Especially, the excitation energy and $E2$ transition of $0^+_2$ state, which is intimately associated with shape coexistence, can be well reproduced. The analysis on low-lying states and some key structure indicators indicates that there is a coexistence between spherical shape and $\gamma$-soft shape in $^{76}$Se.


2012 ◽  
Vol 51 (4) ◽  
pp. 2010-2015 ◽  
Author(s):  
Hanan E. Abdou ◽  
Ahmed A. Mohamed ◽  
José M. López-de-Luzuriaga ◽  
Miguel Monge ◽  
John P. Fackler

2015 ◽  
Vol 749 ◽  
pp. 8-12
Author(s):  
Eva Scholtzová ◽  
Daniel Tunega

The DFT method was used for modeling a partial decomposition of the structure of the thaumasite mineral. The four models with a consecutive decreasing of water content were prepared (T12 – 100 %, T9 – 75 %, T6 – 50 %, T3 – 25 %) and corresponding decomposition enthalpies were calculated. The results showed a good agreement with available experimental data for the decomposition reaction of the thaumasite structure.


2021 ◽  
Vol 8 (4) ◽  
pp. 20218416
Author(s):  
Igor L. Nikonov ◽  
Leila K. Sadieva ◽  
Мaria I. Savchuk ◽  
Еkaterina S. Starnovskaya ◽  
Dmitry S. Kopchuk ◽  
...  

A rational approach to the synthesis of substituted naphtho[1,8-ef]perimidines based on SNH methodology and cyclization  reaction in the series of condensed azines with naphthalene substituents was presented. Photophysical properties of the obtained fluorophores were studied, in particular, green fluorescence in the 485–536 nm range with quantum yield up to 32.4% was detected. HOMO-LUMO energy values and distributions for the new compounds were calculated by the DFT method in comparison with nitroanalytes and perylene. Based on the data obtained, as well as on the results of fluorescence titration, the possibility of using the new diazaperylenes as potential chemosensors for the visual detection of nitro-containing explosives was shown.


Author(s):  
Amanzhan T. Saginayev ◽  
Evgenii I. Bagrii

Propyladamantanes were synthesized by alkylation of adamantane with isopropyl alcohol in the temperature range from 5 to 40 °C in the presence of 96% sulfuric acid. Tetramethyl- and dimethylethyladamantanes were synthesized by isomerization of perhydroanthracene in the presence of aluminium oxide catalyst on the setup of the flow type. Isomers of butyladamantanes were obtained by the reaction of alkylation of the adamantane with isooctane. For each molecule, the optimization of the geometric parameters of atoms was carried out using analytical calculation methods. By calculating the frequencies of normal vibrations using the second derivatives, it was confirmed that the stationary points determined by optimizing the geometry correspond to the minima of the potential energy surface. The structure of 1-n-propyladamantane (I), 1-isopropyl-adamantane (II), 2-n-propyladamantane (III), 1,2-di-n-propyladamantane (IV), 1,3-dimethyl-5-ethyladamantane (V), 1,3,5,6-tetramethyladamantane (VI), 1,3,5,7-tetramethyladamantane (VII), perhydroanthracene (VIII), 1-n-butyladamantane (IX), 1-isobutyladamantane (X), 1-sec-butyladamantane (XI) has been studied using the DFT method with the Becke–Lee–Yang–Parr hybrid energy functional of electron density with the 6-31G* basis set. The geometric and electronic characteristics of the compounds and their total energy, normal vibration frequencies have been calculated. It has been shown that the calculated Gibbs free energies of formation for the perhydroanthracene isomerization products are in qualitative agreement with the experimental product composition of the isomerate and alkylation of adamantane with isopropyl alcohol are in qualitative agreement with the experimental composition of the products. A good agreement of calculated and experimental data on the composition of equilibrium mixtures was obtained. The theoretical geometry of the synthesized alkyladamantanes with Td symmetry very well agrees with the results of electron diffraction. Closest to the results obtained experimentally, the geometry was predicted by B3LYP, in which the lengths of C-C and C-H bonds are close to 1.544 and 1,100Ả, respectively, and the C-Csec-C and C-Cter-C angles are 109°. The results of the calculation using the B3LYP method are in good agreement with the experimental data. There is no definite relationship between the size of the molecules and the convergence of the calculated and experimental data. A practically important conclusion arising from the results of this and previous studies is that the use of the calculation method leads to “chemically accurate” data.  


2018 ◽  
Vol 5 (5) ◽  
pp. 777-787 ◽  
Author(s):  
Abbasriyaludeen Abdul Raheem ◽  
Santhosh Kamaraj ◽  
Veeman Sannasi ◽  
Chandrasekar Praveen

Low band gap molecular semiconductors based on push–pull systems with appropriate HOMO–LUMO energy levels for organic photovoltaic applications were accomplished.


Sign in / Sign up

Export Citation Format

Share Document