scholarly journals A Robot Obstacle Avoidance Method based on Random Forest HTM Cortical Learning Algorithm

Webology ◽  
2020 ◽  
Vol 17 (2) ◽  
pp. 788-803
Author(s):  
Ahmed Mahdi Abdulkadium

Robotics mainly concern with the movement of robot with improvement obstacle avoidance, this issue is handed. It contains of a Microcontroller to process the data, and Ultrasonic sensors to detect the obstacles on its path. Artificial intelligence is used to predict the presence of obstacle in the path. In this research random forest algorithm is used and it is improved by RFHTMC algorithm. Deep learning mainly compromises of reducing the mean absolute error of forecasting. Problem with random forest is time complexity, as it involves formation of many classification trees. The proposed algorithm reduces the set of rules which is used for classification model, to improve time complexity. Performance analysis shows an significant improvement in results as compare to other deep learning algorithm as well as random forest. Forecasting accuracy shows 8% improvement as compare to random forest with 26% reduced operation time.

Sensors ◽  
2020 ◽  
Vol 20 (9) ◽  
pp. 2699 ◽  
Author(s):  
Redhwan Algabri ◽  
Mun-Taek Choi

Human following is one of the fundamental functions in human–robot interaction for mobile robots. This paper shows a novel framework with state-machine control in which the robot tracks the target person in occlusion and illumination changes, as well as navigates with obstacle avoidance while following the target to the destination. People are detected and tracked using a deep learning algorithm, called Single Shot MultiBox Detector, and the target person is identified by extracting the color feature using the hue-saturation-value histogram. The robot follows the target safely to the destination using a simultaneous localization and mapping algorithm with the LIDAR sensor for obstacle avoidance. We performed intensive experiments on our human following approach in an indoor environment with multiple people and moderate illumination changes. Experimental results indicated that the robot followed the target well to the destination, showing the effectiveness and practicability of our proposed system in the given environment.


Diagnostics ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1246
Author(s):  
Ning Hung ◽  
Andy Kuan-Yu Shih ◽  
Chihung Lin ◽  
Ming-Tse Kuo ◽  
Yih-Shiou Hwang ◽  
...  

In this study, we aimed to develop a deep learning model for identifying bacterial keratitis (BK) and fungal keratitis (FK) by using slit-lamp images. We retrospectively collected slit-lamp images of patients with culture-proven microbial keratitis between 1 January 2010 and 31 December 2019 from two medical centers in Taiwan. We constructed a deep learning algorithm consisting of a segmentation model for cropping cornea images and a classification model that applies different convolutional neural networks (CNNs) to differentiate between FK and BK. The CNNs included DenseNet121, DenseNet161, DenseNet169, DenseNet201, EfficientNetB3, InceptionV3, ResNet101, and ResNet50. The model performance was evaluated and presented as the area under the curve (AUC) of the receiver operating characteristic curves. A gradient-weighted class activation mapping technique was used to plot the heat map of the model. By using 1330 images from 580 patients, the deep learning algorithm achieved the highest average accuracy of 80.0%. Using different CNNs, the diagnostic accuracy for BK ranged from 79.6% to 95.9%, and that for FK ranged from 26.3% to 65.8%. The CNN of DenseNet161 showed the best model performance, with an AUC of 0.85 for both BK and FK. The heat maps revealed that the model was able to identify the corneal infiltrations. The model showed a better diagnostic accuracy than the previously reported diagnostic performance of both general ophthalmologists and corneal specialists.


Author(s):  
Ning Hung ◽  
Eugene Yu-Chuan Kang ◽  
Andy Guan-Yu Shih ◽  
Chi-Hung Lin ◽  
Ming‐Tse Kuo ◽  
...  

In this study, we aimed to develop a deep learning model for identifying bacterial keratitis (BK) and fungal keratitis (FK) by using slit-lamp images. We retrospectively collected slit-lamp images of patients with culture-proven microbial keratitis between January 1, 2010, and December 31, 2019, from two medical centers in Taiwan. We constructed a deep learning algorithm, consisting of a segmentation model for cropping cornea images and a classification model that applies convolutional neural networks to differentiate between FK and BK. The model performance was evaluated and presented as the area under the curve (AUC) of the receiver operating characteristic curves. A gradient-weighted class activation mapping technique was used to plot the heatmap of the model. By using 1330 images from 580 patients, the deep learning algorithm achieved an average diagnostic accuracy of 80.00%. The diagnostic accuracy for BK ranged from 79.59% to 95.91% and that for FK ranged from 26.31% to 63.15%. DenseNet169 showed the best model performance, with an AUC of 0.78 for both BK and FK. The heat maps revealed that the model was able to identify the corneal infiltrations. The model showed better diagnostic accuracy than the previously reported diagnostic performance of both general ophthalmologists and corneal specialists.


2021 ◽  
Vol 11 (22) ◽  
pp. 10735
Author(s):  
Mari Carmen Domingo

Smart seaside cities can fully exploit the capabilities brought by Internet of Things (IoT) and artificial intelligence to improve the efficiency of city services in traditional smart city applications: smart home, smart healthcare, smart transportation, smart surveillance, smart environment, cyber security, etc. However, smart coastal cities are characterized by their specific application domain, namely, beach monitoring. Beach attendance prediction is a beach monitoring application of particular importance for coastal managers to successfully plan beach services in terms of security, rescue, health and environmental assistance. In this paper, an experimental study that uses IoT data and deep learning to predict the number of beach visitors at Castelldefels beach (Barcelona, Spain) was developed. Images of Castelldefels beach were captured by a video monitoring system. An image recognition software was used to estimate beach attendance. A deep learning algorithm (deep neural network) to predict beach attendance was developed. The experimental results prove the feasibility of Deep Neural Networks (DNNs) for beach attendance prediction. For each beach, a classification of occupancy was estimated, depending on the number of beach visitors. The proposed model outperforms other machine learning models (decision tree, k-nearest neighbors, and random forest) and can successfully classify seven beach occupancy levels with the Mean Absolute Error (MAE), accuracy, precision, recall and F1-score of 0.03, 92.7%, 92.9%, 92.7%, and 92.7%, respectively.


Horticulturae ◽  
2021 ◽  
Vol 8 (1) ◽  
pp. 21
Author(s):  
Jizhang Wang ◽  
Zhiheng Gao ◽  
Yun Zhang ◽  
Jing Zhou ◽  
Jianzhi Wu ◽  
...  

In order to realize the real-time and accurate detection of potted flowers on benches, in this paper we propose a method based on the ZED 2 stereo camera and the YOLO V4-Tiny deep learning algorithm for potted flower detection and location. First, an automatic detection model of flowers was established based on the YOLO V4-Tiny convolutional neural network (CNN) model, and the center points on the pixel plane of the flowers were obtained according to the prediction box. Then, the real-time 3D point cloud information obtained by the ZED 2 camera was used to calculate the actual position of the flowers. The test results showed that the mean average precision (MAP) and recall rate of the training model was 89.72% and 80%, respectively, and the real-time average detection frame rate of the model deployed under Jetson TX2 was 16 FPS. The results of the occlusion experiment showed that when the canopy overlap ratio between the two flowers is more than 10%, the recognition accuracy will be affected. The mean absolute error of the flower center location based on 3D point cloud information of the ZED 2 camera was 18.1 mm, and the maximum locating error of the flower center was 25.8 mm under different light radiation conditions. The method in this paper establishes the relationship between the detection target of flowers and the actual spatial location, which has reference significance for the machinery and automatic management of potted flowers on benches.


2022 ◽  
pp. 103-119
Author(s):  
Basetty Mallikarjuna ◽  
Supriya Addanke ◽  
Anusha D. J.

This chapter introduces the novel approach in deep learning for diabetes prediction. The related work described the various ML algorithms in the field of diabetic prediction that has been used for early detection and post examination of the diabetic prediction. It proposed the Jaya-Tree algorithm, which is updated as per the existing random forest algorithm, and it is used to classify the two parameters named as the ‘Jaya' and ‘Apajaya'. The results described that Pima Indian diabetes dataset 2020 (PIS) predicts diabetes and obtained 97% accuracy.


2020 ◽  
Vol 6 (2) ◽  
pp. 97-106
Author(s):  
Khan Nasik Sami ◽  
Zian Md Afique Amin ◽  
Raini Hassan

Waste Management is one of the essential issues that the world is currently facing does not matter if the country is developed or under developing. The key issue in this waste segregation is that the trash bin at open spots gets flooded well ahead of time before the beginning of the following cleaning process. The isolation of waste is done by unskilled workers which is less effective, time-consuming, and not plausible because of a lot of waste. So, we are proposing an automated waste classification problem utilizing Machine Learning and Deep Learning algorithms. The goal of this task is to gather a dataset and arrange it into six classes consisting of glass, paper, and metal, plastic, cardboard, and waste. The model that we have used are classification models. For our research we did comparisons between four algorithms, those are CNN, SVM, Random Forest, and Decision Tree. As our concern is a classification problem, we have used several machine learning and deep learning algorithm that best fits for classification solutions. For our model, CNN accomplished high characterization on accuracy around 90%, while SVM additionally indicated an excellent transformation to various kinds of waste which were 85%, and Random Forest and Decision Tree have accomplished 55% and 65% respectively


10.2196/15931 ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. e15931 ◽  
Author(s):  
Chin-Sheng Lin ◽  
Chin Lin ◽  
Wen-Hui Fang ◽  
Chia-Jung Hsu ◽  
Sy-Jou Chen ◽  
...  

Background The detection of dyskalemias—hypokalemia and hyperkalemia—currently depends on laboratory tests. Since cardiac tissue is very sensitive to dyskalemia, electrocardiography (ECG) may be able to uncover clinically important dyskalemias before laboratory results. Objective Our study aimed to develop a deep-learning model, ECG12Net, to detect dyskalemias based on ECG presentations and to evaluate the logic and performance of this model. Methods Spanning from May 2011 to December 2016, 66,321 ECG records with corresponding serum potassium (K+) concentrations were obtained from 40,180 patients admitted to the emergency department. ECG12Net is an 82-layer convolutional neural network that estimates serum K+ concentration. Six clinicians—three emergency physicians and three cardiologists—participated in human-machine competition. Sensitivity, specificity, and balance accuracy were used to evaluate the performance of ECG12Net with that of these physicians. Results In a human-machine competition including 300 ECGs of different serum K+ concentrations, the area under the curve for detecting hypokalemia and hyperkalemia with ECG12Net was 0.926 and 0.958, respectively, which was significantly better than that of our best clinicians. Moreover, in detecting hypokalemia and hyperkalemia, the sensitivities were 96.7% and 83.3%, respectively, and the specificities were 93.3% and 97.8%, respectively. In a test set including 13,222 ECGs, ECG12Net had a similar performance in terms of sensitivity for severe hypokalemia (95.6%) and severe hyperkalemia (84.5%), with a mean absolute error of 0.531. The specificities for detecting hypokalemia and hyperkalemia were 81.6% and 96.0%, respectively. Conclusions A deep-learning model based on a 12-lead ECG may help physicians promptly recognize severe dyskalemias and thereby potentially reduce cardiac events.


2017 ◽  
Vol 13 (12) ◽  
pp. 127 ◽  
Author(s):  
Liwei Geng ◽  
Tingting Dong

<span style="font-family: 'Times New Roman',serif; font-size: 10pt; mso-fareast-font-family: SimSun; mso-ansi-language: EN-GB; mso-fareast-language: EN-US; mso-bidi-language: AR-SA;" lang="EN-GB">The rise and development of the Internet of Things (IoT) have given birth to the frontier technology of the agricultural IoT, which marks the future trend in agriculture and the IoT. The agricultural IoT can be combined with Zigbee, a short-range wireless network technology for monitoring systems, to solve the excessively large planting area and other defects in agricultural production. Meanwhile, the modernization of planting and harvesting has set the stage for deep learning. Unlike the artificial neural network, the deep learning is an important intelligent algorithm, capable of solving many real-world problems. Therefore, this paper probes into the problems of modern automatic agriculture. First, the routing allocation technology and transmission mode were optimized to solve the energy consumption problem. Second, the classification model based on deep learning algorithm was put forward according to the application of the Wireless Sensor Network (WSN) in continuous monitoring of soil temperature and humidity. Despite the lack of upper soil humidity sensor in agriculture, the model can still classify the soil moisture of the nodes, and derive the main soil moisture content. Finally, a solution was presented based on agricultural ZigBee WSN technology. In addition to cheap cost and low power consumption, the solution has the functions of reminding and recognition due to the adoption of artificial intelligence algorithm. Suffice it to say that the solution is a successful attempt to integrate artificial intelligence and sensor technology into agricultural modernization.</span>


Sign in / Sign up

Export Citation Format

Share Document