scholarly journals DESAIN SISTEM KENDALI UMPAN BALIK STATE PADA KASUS KONTINYU UNTUK MEJA KERJA CNC

2019 ◽  
Vol 20 (2) ◽  
pp. 32
Author(s):  
Fakhruddin Mangkusasmito ◽  
Tsani Hendro Nugroho

Fakhruddin Mangkusasmito, Tsani Hendro Nugroho in this paper explain that One of the important control system in the manufacturing industry is the position control. Mainly in the Computer Numerical Control (CNC) machine, work-table motion control system is used to regulate work-table movements when the machine process a workpieces on it. On standard machines, work-table movements are two axes (X-Y), which is driven by a motor and lead-screw. The discussion in this research only focus on one axis assuming that the systems on both axes are the same and independent. In this research, MATLAB is used to describe the behaviour of the system and also to design appropriate control system in continuos system using state feedback linear controller such as pole placement , tracking system, full order compensator and reduced order compensator. The goal is to obtain a fast response with a rapid rise time and settling time to a step command, while not exceeding an overshoot of 5%. The specification are than a percent overshoot equal to1%, 0,05s settling time and 0,03s rise time. The performance of each control methods are simulated and analyzed to decide the best suit control method for the systems with such criteria. And the result verify that using tracking system controller method achieve such specification with 0% overshoot, 0,04s settling time and 0,028s rise time.

2018 ◽  
Vol 152 ◽  
pp. 02022
Author(s):  
Kah Kit Wong ◽  
Choon Lih Hoo ◽  
Mohd Hardie Hidayat Mohyi

Control system plays a major role in the industry nowadays as it simplifies workload and reduce manpower. Among all the controlled applicable field, control system is heavily used in motor speed and motor position controls. Although there are various types of controllers available in the market, PID controller remains as one of the most used controller due to its simplicity. Unfortunately, PID controller experiences windup phenomenon which affects the controller’s performance. This paper proposes a new type of anti-windup PI controller, SIPIC for motor position control application and aims to validate the performance of this controller as compared to conventional PI controller. To test the ability of the controllers, both controllers were experimented using hardware testing. The settings conditions of with and without loadings were used under two different inputs of 0° to 90° and 270° to 90°. The results obtained show that under without loadings, both controller showed favourable performances. Though, SIPIC controller slightly outperforms PI controller by having lower overshoot and shorter settling time for a wider range of gains. The rise time of both controllers are similar as it is the lowest possible rise time due to hardware limitations. Experiment results with loading condition, for both inputs and when Kp is 1 and Ki is 15, PI controller shows unstable performance by having large amount of oscillations and overshoots. The settling time was unable to be determined as the controller did not settle within the given step time. On the other hand, at the same gain, SIPIC controller still shows acceptable performance. This shows that SIPIC controller is more favourable by having better stable performance for a wider range of gains while PI controller needs to be finely tuned to a specific gain to obtain desired results..


2020 ◽  
Vol 9 (2) ◽  
Author(s):  
Afif Caesar Distara ◽  
Fatkhur Rohman

Electric vehicles are alternative vehicles that carry energy efficient. At this time the dominant vehicle uses ordinary wheels so that it will become an obstacle in the maneuver function that requires movement in various directions. With mechanum wheels the vehicle can move in various directions by adjusting the direction of rotation of each wheel. The problem is choosing the right control system for the control system needed by the vehicle. The purpose of this study is to determine and analyze the effect of variations in the value of PI (Proportional Integral) and speed of the vehicle to the stability response of the system to control the direction of prototype electric vehicles. This study method is an experiment that is by giving a treatment, then evaluating the effects caused by the research object. The results of this study can be concluded that the variation of PI constant values and speed variations have an effect on the stability parameters of the system, namely rise time, settling time, overshot, and steady state error. To get the best system stability response results can use the constant value PI Kp = 2; and Ki = 17; where the stability response of the system for direction control at each speed condition has a fairly good value with a fast rise time, fast settling time, small overshot and a small error steady state compared to other PI constant values in this study.Keywords: mechanum wheel, PI control, direction, prototype, system stability


2011 ◽  
Vol 317-319 ◽  
pp. 1960-1963
Author(s):  
Li Bing Zhang ◽  
Ting Wu

This paper presents a technique for the position servo system of numerical control (NC) machine tool by utilizing the optimal quadratic controller. The mathematical model of the position servo control system is structured, which of the plant model is identified by making use of recursive least square method. The fundamental method of designing the optimal quadratic controller is proposed. Simulation of the optimal quadratic controller and PID controller are implemented by using MATLAB. The results of simulation show that the proposed control method of positional servo control system has better dynamic characteristics and better steady performance.


2013 ◽  
Vol 446-447 ◽  
pp. 1165-1170
Author(s):  
Shu Yuan Ma ◽  
Bdran Sameh ◽  
Saifullah Samo ◽  
Aymn Bary

In this paper, the CVT shifting control system based on vehicle operating conditions is modeled and simulated using MATLAB/SIMULINK. The modeling stage begins with the derivation of required mathematical model to illustrate the CVT shifting control system. Then, Linear Quadratic Gaussian (LQG), Proportional- Integrated-Derivative (PID) and Pole Placement are applied for controlling the shifting speed ratio of the modeled CVT shifting system. Simulation results of shifting controllers are presented in time domain and the results obtained with LQG are compared with the results of PID and Pole placement technique. Finally, the performances of shifting speed ratio controller systems are analyzed in order to choose which control method offers the better performance with respect to the desired speed ratio. According to simulation results, the LQG controller delivers better performance than PID and Pole Placement controller.


2014 ◽  
Vol 644-650 ◽  
pp. 636-638
Author(s):  
Yun Li Zhang

Laser cutting focus position automatic tracking system of control precision directly affects the quality of laser cutting processing. There is a low anti-jamming capability, poor quality,poorer openness and poorer dynamic response short comings in the inductive sensor or the capacitive sensor and constitute of the single chip microcomputer control system. This paper introduces a laser focus automatic tracking system based on motion controller, using optical encoder as displacement sensor, use the motion controller of master-slave tracking (electronic gear) function implementation focus position error compensation quickly. Improve the quality of system control, openness, the stability and reliability.


2017 ◽  
Vol 3 (3) ◽  
pp. 134
Author(s):  
Anwar Mujadin ◽  
Dwi Astharini

<p><em>Abstrak – </em><strong>Ball on plate adalah sistem pengendalian cerdas untuk mengarahkan bola  yang ada diatas plate sesuai dengan pola gerakan yang diinginkan tanpa menjatuhkan bola. Ball on plate ini digerakan oleh dua buah motor servo sebagai aktuator (keluaran) untuk menentukan posisi bola. Sedangkan kamera ditempatkan diatas plate sebagai sensor (masukan). Image yang ditangkap oleh kamera kemudian diolah oleh labview menjadi pixel posisi X dan Y. Kerjasama antar mikrokontroler Arduino Uno  dan Labview membentuk sebuah pengendalaian close loop system. Pada tulisan ini akan dibahas parameter penting dalam menganalisa  rise time, overshoot, settling time dan steady state error pada pengendalian sistem ball on plate menggunakan PID.</strong></p><p><strong><br /></strong></p><p><strong><em>Kata kunci </em></strong><em>- Arduino Uno R3 Ball on plate Controller,</em></p><p><em> </em></p><p><em>Abstract –</em> <strong>Ball on the plate is an intelligent control system to steer the ball over the plate that is in accordance with the desired pattern of movement without dropping the ball. Ball on plate is controlled  by two servo motors as actuators (output) to determine the position of the ball. While the camera is placed on the plate as a sensor (input). Image captured by the camera and processed by labview to pixel positions X and Y. The cooperation among the microcontroller Arduino Uno and Labview configurate a close loop system. In this paper will discuss important parameter in analyzing the rise time, overshoot, settling time and steady state error in the control system using PID ball on the plate.</strong></p><p><strong><br /></strong></p><strong><em>Keywords</em></strong><em> – Arduino Uno R3 Ball on plate Controller </em>


Author(s):  
Kazuhiko Hiramoto ◽  
Taichi Matsuoka ◽  
Katsuaki Sunakoda

A semi-active control method based on a controlled output of a targeted active control law is proposed in the study. As a conventional method, a semi-active control law based on the targeted active control input, e.g., a clipped optimal control and its related methods, is widely used for the vibration control of structural systems. In the present study, on the other hand, the controlled output of the targeted active control law is used as the reference of the semi-active control. The semi-active control strategy is referred to as “output emulation approach” and the authors showed a method based on the output emulation approach based on the predicted controlled output by assuming the targeted active control as the LQ optimal control law in the previous study. In this paper, a new output emulation semi-active control method with a quadratic error function between the controlled output signal of the semi-active control system and that of the targeted active control system. The semi-active control law minimizing the quadratic error function is obtained as a bang-bang type switching of the variable damping coefficient of the semi-active control device. The targeted active control law is defined as a state-space control with a constraint on the closed-loop pole placement. Design parameters to determine the region of the pole placement of the targeted active control system are adjusted so that the semi-active control based on the proposed output emulation approach is optimized. The effectiveness of the proposed approach is shown with a simulation example.


2010 ◽  
Vol 20-23 ◽  
pp. 254-258 ◽  
Author(s):  
Yu Hai Peng ◽  
Hai Qing Bai ◽  
Ning He

The CNC technology, which directly decides the function and performance of the manufacturing equipments, is the key technique group that supports the modern equipment manufacturing industry. And it is also the key technique for equipment layer which can push forward industrialization with informatization. By the research of open numerical control system, a kind of CNC system has been constructed based on IPC and PMAC motion control card using the designing method of modularization. By test and research, it has been proven that the Open Numerical Control system has complete functions and excellent performance, and can meet the request of modern numerical control machine tool for open numerical control system.


2012 ◽  
Vol 192 ◽  
pp. 375-379
Author(s):  
Hong Zheng

Equipment manufacturing industry is an important factor to measure a country's comprehensive national strength. The servo control technology is one of the core technologies of numerical control systems and motion control, as well as an important part of the equipment manufacturing. This paper, on the basis of motion control, studies the development status of servo control home and abroad and analyzes in-depth the various components of the AC servo control system and the parameter confirmation of the controller. It discusses the approximate processing on control system and simplification of passing functions and uses the best second-order tuning to set the project for the current loop Pl adjustment device, simplifying the current loop into an inertia link.


Sign in / Sign up

Export Citation Format

Share Document