scholarly journals Anti-windup PI controller, SIPIC For Motor Position Control

2018 ◽  
Vol 152 ◽  
pp. 02022
Author(s):  
Kah Kit Wong ◽  
Choon Lih Hoo ◽  
Mohd Hardie Hidayat Mohyi

Control system plays a major role in the industry nowadays as it simplifies workload and reduce manpower. Among all the controlled applicable field, control system is heavily used in motor speed and motor position controls. Although there are various types of controllers available in the market, PID controller remains as one of the most used controller due to its simplicity. Unfortunately, PID controller experiences windup phenomenon which affects the controller’s performance. This paper proposes a new type of anti-windup PI controller, SIPIC for motor position control application and aims to validate the performance of this controller as compared to conventional PI controller. To test the ability of the controllers, both controllers were experimented using hardware testing. The settings conditions of with and without loadings were used under two different inputs of 0° to 90° and 270° to 90°. The results obtained show that under without loadings, both controller showed favourable performances. Though, SIPIC controller slightly outperforms PI controller by having lower overshoot and shorter settling time for a wider range of gains. The rise time of both controllers are similar as it is the lowest possible rise time due to hardware limitations. Experiment results with loading condition, for both inputs and when Kp is 1 and Ki is 15, PI controller shows unstable performance by having large amount of oscillations and overshoots. The settling time was unable to be determined as the controller did not settle within the given step time. On the other hand, at the same gain, SIPIC controller still shows acceptable performance. This shows that SIPIC controller is more favourable by having better stable performance for a wider range of gains while PI controller needs to be finely tuned to a specific gain to obtain desired results..

2019 ◽  
Vol 20 (2) ◽  
pp. 32
Author(s):  
Fakhruddin Mangkusasmito ◽  
Tsani Hendro Nugroho

Fakhruddin Mangkusasmito, Tsani Hendro Nugroho in this paper explain that One of the important control system in the manufacturing industry is the position control. Mainly in the Computer Numerical Control (CNC) machine, work-table motion control system is used to regulate work-table movements when the machine process a workpieces on it. On standard machines, work-table movements are two axes (X-Y), which is driven by a motor and lead-screw. The discussion in this research only focus on one axis assuming that the systems on both axes are the same and independent. In this research, MATLAB is used to describe the behaviour of the system and also to design appropriate control system in continuos system using state feedback linear controller such as pole placement , tracking system, full order compensator and reduced order compensator. The goal is to obtain a fast response with a rapid rise time and settling time to a step command, while not exceeding an overshoot of 5%. The specification are than a percent overshoot equal to1%, 0,05s settling time and 0,03s rise time. The performance of each control methods are simulated and analyzed to decide the best suit control method for the systems with such criteria. And the result verify that using tracking system controller method achieve such specification with 0% overshoot, 0,04s settling time and 0,028s rise time.


Author(s):  
WALUYO WALUYO ◽  
ADITYA FITRIANSYAH ◽  
SYAHRIAL SYAHRIAL

ABSTRAKMotor DC banyak digunakan di industri kecil dan besar.Kecepatan motor DC sering tidak stabil akibat gangguan dari luar maupun perubahan parameter dan torsi beban sehingga perlu dilakukan rancangan kontroler.Kontroler yang dirancang menggunakan PID yang terdiri dari tiga jenis cara pengaturan yang dikombinasikan, yaitu kontrol P (Proportional), kontrol I (Integral) dan kontrol D (Derivatif).Kontroler yang dirancang disimulasikan menggunakan perangkat lunak. Hasil simulasi menunjukan kontroler PID untuk kendali kecepatan motor DC ini menghasilkan kondisi robust (kokoh) saat nilai Kp = 1,1, Ti = 0,1, Td = 3,7. Hasil dari parameter kendali yang dirancang memiliki error steady state 0,99 % dan dengan settling time 3,7 detik pada rise time 2,00 detik dan nilai peak terletak pada 0,99. Kecepatan awal yang dihasilkan mendekati set point yang diinginkan pada detik ke 6 dan kecepatannya tidak ada penurunan atau tetap konstan sampai dengan detik ke 100.Kata kunci: Motor DC, PID, Heuristik, Steady State, Rise Time ABSTRACT DC motors are widely used in small and large industries. Their speeds are often unstable due to interference from outside or change the parameters and load torque, so that it was necessary to design a controller. The controller was designed using a PIDconsists of three types of arrangements, which are mutually combined way, namely the control P (Proportional), control I (Integral) and control D (Derivative). The controllers were designed using software for simulation. The simulation results showed the PID controller for DC motor speed control produced robust conditionswhen the value of Kp, Ti and Tdwere 1.1,  0.1 and 3.7 respectively. The results of the control parameters had error steady state 0.99 % and the settling time of 3.7 seconds at 2.0 sec rise time and the peak value was 0,99. The resulted initial velocity was very fast to approach the desired set point in the sixth second and its speed was remain constant until 100thsecond.Keywords: Motor DC, PID, Heuristic, Steady State, Rise Time


2018 ◽  
Vol 152 ◽  
pp. 02010
Author(s):  
Kah Kit Wong ◽  
Choon Lih Hoo ◽  
Mohd Hardie Hidayat Mohyi

Due to its simplicity, Proportional-Integral (PI) controller still remains as the widely used controller for motor speed control system. However, PI controller exhibits windup phenomenon when the motor operates in a saturated state, which may cause degradation to the control system. In order to overcome the windup phenomenon, many researches have introduced various types of anti-windup methods such as the Conditioning Technique (CI), Tracking Back Calculation (TBC), Integral State Prediction (ISP), Steady-state Integral Proportional Integral Controller-01 (SIPIC01) and Steady-state Integral Proportional Integral Controller-02 (SIPIC02). These are anti-windup techniques with integral control switching mechanism, coupling of proportional gain, kp, and integral gain, ki. Due to the coupled kp and ki, tuning motor performance is a difficult task with short settling time without experiencing overshoot. SIPIC01 and SIPIC02 are robust anti-windup methods without a switching mechanism and exhibit decoupling feature. SIPIC01 and SIPIC02 have shown better dynamic performance compared to CI, TBC and ISP. However, SIPIC01 has not been compared to SIPIC02 in terms of their decoupling effect flexibility and dynamic performance. The decoupling effect was verified using MATLAB simulation, while the performance analysis was verified through hardware simulation and testing by using Scilab. The results obtained from the simulation showed that both SIPIC01 and SIPIC02 consist of decoupling features that allow a performance with coexistence of zero or minimum overshoot with short settling time. However, SIPIC02 consists of longer rise and settling time as compared to SIPIC01. Therefore, it can be concluded that SIPIC01 is better than SIPIC02 in term of dynamic performance.


2021 ◽  
Vol 26 (6) ◽  
pp. 583-588
Author(s):  
Zaw Myo Naing ◽  

Servo drives are one of the most widely utilized devices in various mechanical systems and industrial applications to provide precise position control. The study of servo driver produc-tiveness and performance index is the important task. In this work, PID controller and fuzzy log-ic controller (FLC) were developed to control the position of a DC servo drive. The MATLAB Simulink program was investigated and implemented to calculate the values of servo drive pa-rameters, and a scheme for simulating the operation of a servo drive using different controllers was presented. A mathematical model of a DC servo drive for a positioning control system has been proposed. The control characteristics of the PID controller, fuzzy logic controller and fuzzy PID controller are compared. The simulation results have shown that the PID controller allows for an overshoot of about 1 % with a settling time of about 4 sec. The use of the fuzzy PID con-troller reduces the maximum overshoot to 1 % and decreases the settling time to 2 sec. As a re-sult, the fuzzy PID controller allows for better performance and efficiency compared to other controllers.


2020 ◽  
Vol 9 (2) ◽  
Author(s):  
Afif Caesar Distara ◽  
Fatkhur Rohman

Electric vehicles are alternative vehicles that carry energy efficient. At this time the dominant vehicle uses ordinary wheels so that it will become an obstacle in the maneuver function that requires movement in various directions. With mechanum wheels the vehicle can move in various directions by adjusting the direction of rotation of each wheel. The problem is choosing the right control system for the control system needed by the vehicle. The purpose of this study is to determine and analyze the effect of variations in the value of PI (Proportional Integral) and speed of the vehicle to the stability response of the system to control the direction of prototype electric vehicles. This study method is an experiment that is by giving a treatment, then evaluating the effects caused by the research object. The results of this study can be concluded that the variation of PI constant values and speed variations have an effect on the stability parameters of the system, namely rise time, settling time, overshot, and steady state error. To get the best system stability response results can use the constant value PI Kp = 2; and Ki = 17; where the stability response of the system for direction control at each speed condition has a fairly good value with a fast rise time, fast settling time, small overshot and a small error steady state compared to other PI constant values in this study.Keywords: mechanum wheel, PI control, direction, prototype, system stability


Author(s):  
Pilla Ramana ◽  
Karlapudy Alice Mary ◽  
Munagala Surya Kalavathi

Control system design for inverter fed drives previously used the classical transfer function approach for single-input singleoutput (SISO) systems. Proportional plus Integral (PI) controllers were designed for individual control loops.It is found that the transient response of a PI controller is slow and is improved by pole placement through state feedback. However, the effective gains of the PI controller are substantially decreased as a function of the increase of motor speed. A control system is generally characterized by the hierarchy of the control loops, where the outer loop controls the inner loops. The inner loops are designed to execute progressively faster. The speed controller (PI controller) processes the speed error and generates the reference torque. In the inner loop, firstly a non-linear controller is designed for the system by which the system nonlinearity is canceled using state or exact feedback linearization. In addition, a linear state feedback control law based on pole placement technique including the integral of output error (IOE) is used in order to achieve zero steady state error with respect to reference current specification, while at the same time improving the dynamic response.The proposed scheme has been validated through extensive simulation using MATLAB.


2011 ◽  
Vol 328-330 ◽  
pp. 1908-1911
Author(s):  
Wei Liu ◽  
Jian Jun Cai ◽  
Xi Pin Fan

To deal with the defects of the steepest descent in slowly converging and easily immerging in partialm in imum,this paper proposes a new type of PID control system based on the BP neural network, which is a combination of the neural network and the PID strategy. It has the merits of both neural network and PID controller. Moreover, Fletcher-Reeves conjugate gradient in controller can make the training of network faster and can eliminate the disadvantages of steepest descent in BP algorithm. The parameters of the neural network PID controller are modified on line by the improved conjugate gradient. The programming steps under MATLAB are finally described. Simulation result shows that the controller is effective.


Sign in / Sign up

Export Citation Format

Share Document