scholarly journals Improvement Approach for Matching PV-array and Inverter of Grid Connected PV Systems Verified by a Case Study

2021 ◽  
Vol 10 (4) ◽  
pp. 687-697
Author(s):  
Moien A. Omar ◽  
Marwan M. Mahmoud

Correct matching between PV array and inverter improves the inverter efficiency, increases the annual produced energy, decreases the clipping losses of the inverter, and prevent to a large extent the inverter frequent shut downs during clear sunny days of high solar radiation and low ambient temperature. Therefore, this paper presents a new methodology for selecting the appropriate peak power of the PV array with respect to the inverter output AC rated power taking into account the local daily distribution of solar radiation and ambient temperature. In addition, the proposed methodology specifies the appropriate number of PV modules in each string and the number of parallel strings connected to the input of the inverteraccording to its specifications and to PV cell temperature. Mathematically modeling of system parameters and components are presented and used in the simulation to investigate the different scenarios. The paper presents also a case study using simulation to find the optimal matching parameters of a PV array connected to an inverter with the specifications: 6 kW rated output power, an input mpp voltage range of 333-500 V, 6.2 kW maximum input DC power, and an output AC voltage of 230 Vrms. Considering the local climate conditions in West Bank, the simulation resulted a peak power of 7 kW for the PV array, which is greater than the inverter output power by the factor 1.16. In addition, the obtained PV array consists of two parallel strings each includes 12 PV modules  connected in series  while each PV module is rated at 290 W. The output voltage of the PV arrayvaries between 359 V to 564 Vat minimum and maximum temperature of 10 ˚C to 70 ˚C respectively. This PV array-inverter combination resulted by simulation an annual yield of 1600 kWh/kWp and an energy of 11197 kWh which corresponds to an energy gain of 1591 kWh/year more than using a PV array with a peak power of 6 kW as the inverter rated power.

Author(s):  
Ali Saleh Aziz ◽  
Mohammad Faridun Naim Tajuddin ◽  
Sanjeevikumar Padmanaban ◽  
Lucian Mihet-Popa ◽  
Mohd Rafi Adzman ◽  
...  

The There are many factors influencing the performance of photovoltaic (PV) systems. Among these factors, temperature and solar radiation are two major parameters that have a large effect on the efficiency of PV systems. The cell temperature of PV panels is related to the ambient temperature while the solar radiation incident on the surface of the PV modules depends on the slope and azimuth of these modules. Furthermore, ground reflectance (albedo) affects the irradiance incident on the PV panel surface, which in turn affects the output of a PV system. Nevertheless, the effects of these factors on the economic performance of the solar PV systems are scarcely reported. This paper presents a complete design of a stand-alone PV/battery system to supply electric power for a mobile base station in Choman, Erbil, Iraq. The effects of different factors on the total electricity produced by PV arrays and its economic performance are simultaneously investigated. HOMER software has been used as a tool for the techno-economic and environmental analysis. As indicated from the simulation results, the PV array capacity and its economic performance are highly affected by the variation of the slope and azimuth. With a base case (albedo of 20% and average annual ambient temperature of 11°C), the best feasible system which is achieved by facing PV due to south with a tilt angle of 40° or 45°, is found to have net present cost (NPC) of 70595 $ and cost of energy (COE) of 0.54 $/kWh. Moreover, the results indicate that increasing the ground reflectance from 10% to 90% results in a 7.2% decrease in the PV array capacity and about 3% decrease in the NPC and COE. On the other hand, increasing the ambient temperature from 0°C to 40°C results in a 19.7% increase in the PV array capacity and an 8.2% increase in the NPC and COE. Furthermore, according to the ambient temperature of Choman, using PV modules with high sensitivity to temperature is found to be an attractive option. Provided simulation performance analysis proves that the studied parameters must be treated well to establish an enabling environment for solar energy development in Iraq.


Author(s):  
Kamil Jadu Ali ◽  
Ahmed Hasan Mohammad ◽  
Ghanim Thiab Hasan

<p><span>In this paper, the effect of the ambient temperature on the PV modules for different angles of inclinations and different intensities of the solar radiation on the surface of the PV module is considered by using empirical correlations for natural convection. An analytical model based on the energy balance equilibrium between the PV module and the environment conditions has been used. Also an expression for calculating the electric power of silicon PV modules in a function of the ambient temperature, the intensity of the solar radiation, the incident angle of the solar radiation to the surface of the PV module and the efficiency of the PV modules at STC conditions have been used. By comparing the obtained both results, it can be seen that the largest deviation between the power values obtained by the analytical model and expression is about (5 %). The results obtained indicates that in the case of a small number of PV modules corresponding to the required number for an average household, it is more economical to invest additional resources in increasing the PV module's surface area than in case of the PV module with sun tracking system. </span></p>


2016 ◽  
Vol 14 (1) ◽  
pp. 37-51 ◽  
Author(s):  
Lana Pantic ◽  
Tomislav Pavlovic

The aim of this paper was to investigate the influence of solar radiation intensity, ambient temperature, wind speed and solar module temperature on the modules physical characteristics, in local climate conditions and for all seasons in Nis, Serbia. Twelve sunny days, for each month of the year, from the period September 2014 - June 2016 were selected. During each day meteorological parameters, solar module temperature and solar module output parameters were measured. The highest values of solar radiation intensity, ambient temperature and solar module temperature were measured in summer months, while the lowest values were in winter months. The maximal values of the output power were measured in summer months due to the high values of solar radiation intensity on the solar modules surface. A negative impact of high solar module temperature on the open circuit voltage, the output power, the fill factor and the efficiency was observed. In the winter months the local climatic conditions and air pollution have an adverse impact on the solar module efficiency and lead to a noticeable reduction of the efficiency.


2019 ◽  
Vol 142 (1) ◽  
Author(s):  
Dara Khalid Khidhir ◽  
Soorkeu A. Atrooshi

Abstract The principle of solar chimney power plant (SCPP) is based on harvesting the thermal spectrum of solar radiation and converting it to mechanical energy by the means of a collector, a wind turbine, and a chimney. In this work, a number of experiments were performed on a modified model made up of one-third of the circular collector area. Field data from selected clear, sunny days were recorded and studied. The analysis focused on time-temperature relations for ambient, near chimney entry point and the collector periphery, in addition to hourly solar radiation intensity and air velocity inside the chimney. The results show that for this geometry arrangement, the maximum temperature of the air entering the chimney is achieved before the ambient temperature reaches its peak value. Air velocity inside the chimney depends on the intensity of solar radiation and the temperature difference between the air temperature entering the chimney and the ambient temperature. Solar intensity directly affects the temperature of air beneath the collector, and a part of this energy is stored in the ground. Later, when the solar radiation is impaired, the stored energy can be utilized. Air velocity of 2.1 m/s is obtained after the solar noon, when the solar intensity is 737 W/m2 and the maximum temperature difference is 11.2 °C. Due to the unique geometrical shape of the rig, a minor temperature loss of up to 1.3 °C occurs for the air near the center of the chimney.


Energies ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 623 ◽  
Author(s):  
Ramez Abdallah ◽  
Adel Juaidi ◽  
Salameh Abdel-Fattah ◽  
Francisco Manzano-Agugliaro

The optimum tilt angle of solar panels or collectors is crucial when determining parameters that affect the performance of those panels. A mathematical model is used for determining the optimum tilt angle and for calculating the solar radiation on a south-facing surface on a daily, monthly, seasonal, semi-annual, and annual basis. Photovoltaic Geographical Information System (PVGIS) and Photovoltaic Software (PVWatts) is developed by the NREL (US National Renewable Energy Laboratory) are also used to calculate the optimum monthly, seasonal, semi-annual, and annual tilt angles and to compare these results with the results obtained from the mathematical model. The results are very similar. PVGIS and PVWatts are used to estimate the solar radiation on south-facing surfaces with different tilt angles. A case study of a mono-crystalline module with 5 kWP of peak power is used to find out the amount of increased energy (gains) obtained by adjusting the Photovoltaic (PV) tilt angles based on yearly, semi-annual, seasonal, and monthly tilt angles. The results show that monthly adjustments of the solar panels in the main Palestinian cities can generate about 17% more solar energy than the case of solar panels fixed on a horizontal surface. Seasonal and semi-annual adjustments can generate about 15% more energy (i.e., it is worth changing the solar panels 12 times a year (monthly) or at least 2 times a year (semi-annually). The yearly optimum tilt angle for most Palestinian cities is about 29°, which yields an increase of about 10% energy gain compared to a solar panel fixed on a horizontal surface.


Energies ◽  
2019 ◽  
Vol 12 (5) ◽  
pp. 874 ◽  
Author(s):  
Ahmed Mansur ◽  
Md. Amin ◽  
Kazi Islam

The mismatch in current-voltage (I-V) characteristics of photovoltaic (PV) modules causes significant power loss in a large PV array, which is known as mismatch power loss (MML). The PV array output power generation can be improved by minimizing MML using different techniques. This paper investigates the performance of different module arrangement techniques to minimize MML both for long series string (LSS) and long parallel branch (LPB) in series-parallel (SP) array configurations at uniform irradiance condition. To investigate the significance of MML LSS-SP configuration with dimensions: 1 × 40, 2 × 20, 4 × 10, 5 × 8 and LPB-SP configuration with dimensions: 40 × 1, 20 × 2, 10 × 4, 8 × 5 were used. A comparative analysis is made to find the effectiveness of MML reduction techniques on PV arrays with three different power ratings. Simulation results show that the PV modules arrangement obtained by the genetic algorithm (GA) and current based arrangement (Im) performed better than the arrangements obtained by all other techniques in terms of PV array output power and MML minimization. The performance of the proposed technique was analyzed for both LSS-SP and LPB-SP array configurations in 400 W, 3400 W, and 9880 W arrays. To substantiate the simulation results experiment was performed using a 400 W PV array in outdoor weather condition and obtained similar results. It was also observed that the percentage of recoverable energy (%RE) obtained by arranging the modules using the GA method was higher than Im based method for both LSS-SP and LPB-SP array configurations. A maximum %RE of 4.159 % was recorded for a 5 × 8 LSS-SP array configuration by applying the GA based MML reduction method.


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Jianbo Bai ◽  
Leihou Sun ◽  
Rupendra Kumar Pachauri ◽  
Guangqing Wang

On the basis of a five-parameter photovoltaic (PV) mathematical model, a multipeak output model of a PV array under partial shading conditions (PSCs) is obtained by MATLAB simulation. Simulation and experimental results demonstrate that the model can simulate the performance curves of the PV array under the PSCs. Optimized particle swarm optimization (OPSO) is used to control the multipeak output model that can quickly and accurately track the global maximum power point (GMPP) of PV modules under PSCs. Its main idea is to determine the initial position of particles and remove the acceleration factor and random number in traditional particle swarm optimization (PSO) algorithm. Additionally, according to the distance between two consecutive peak points, the maximum value of velocity is obtained. The advantages of the OPSO include the following: compared with the traditional PSO algorithm, the computing time is greatly shortened; and it is easy to achieve the MPPT with a low-cost microprocessor. In addition, a PV optimizer is designed to improve the output power of PV modules under PSCs, and simulation and experimentation have compared the output characteristics of PV modules in traditional control mode and optimized control mode under PSCs. The experimental results show that the PV optimizer improves the output power of the PV modules by 13.4% under the PSC.


2005 ◽  
Vol 129 (2) ◽  
pp. 253-255 ◽  
Author(s):  
Hongxing Yang ◽  
Lin Lu

The tilt and azimuth angles of a photovoltaic (PV) array affect the amount of incident solar radiation exposed on the array. This paper develops a new mathematical model for calculating the optimum tilt angles and azimuth angles for building-integrated photovoltaic (BIPV) applications in Hong Kong on yearly, seasonal, and monthly bases. The influence of PV cladding orientation on the power output of PV modules is also investigated. The correlations between the optimum tilt angle and local weather conditions or local environmental conditions are investigated. The results give reasonable solutions for the optimum tilt angles for BIPV applications for both grid-connected and stand-alone systems.


Author(s):  
N. Shams ◽  
M. Mc Keever ◽  
S. Mc Cormack ◽  
B. Norton

This paper presents the physical design and experiments of the Concentrating Transpired Air Heating (CTAH) system as a combination of subsystems of parabolic primary and circular secondary reflector that concentrates incident solar radiation onto an inverted perforated absorber. Optical efficiency of the CTAH system has been analysed using a 2D ray tracing model. Experiments have been carried out for 50% perforated black painted aluminium inverted absorber for glazed and unglazed systems. Results show a significant temperature rise of the absorber surface in both cases. The maximum temperature of the absorber for the unglazed system is 52.1°C at 22.5°C ambient temperature, where as for the covered system, it is 67.9°C at 23.2°C ambient temperature.


Sign in / Sign up

Export Citation Format

Share Document