scholarly journals Korelasi Skid Resistance dengan Kedalaman Tekstur pada Permukaan Perkerasan Lentur

2016 ◽  
Vol 22 (2) ◽  
pp. 109
Author(s):  
Indra Jaya Pandia ◽  
Adina Sari Lubis ◽  
Andy Putra Rambe

Skid Resistance is the force generated between the pavement surface and vehicle’s tires to resist the vehicle advance motion when braking. In this research the correlation between skid resistance value and texture depth on the pavement surface will be determined. The skid resistance value determined by using the British Pendulum Tester (BPT) and to determine the texture depth used Sand Patch Method. The research is conducted directly on a macro textured surface with two methods. The first method is applied on Ngumban Surbakti Road where the samples tested with the same distance from the edge of the pavement along the road; The second method is applied on Jend. Sudirman Road where the samples tested with specific distances from the edge of the pavement until the median. From the results of the analysis, there are some conclusions: (1) there is a positive correlation between the texture depth and skid resistance with a coefficient of determination (R2) = 0.028 on Ngumban Surbakti Road and (R2) = 0.191 on  Jend. Sudirman Road;(2) the increase of skid resistance value is directly proportional to the increase of surface texture depth value; and (3) the different methods did not cause significant yield differences.

2021 ◽  
Vol 7 (12) ◽  
pp. 2011-2029
Author(s):  
Diana Jumah Mohammad ◽  
Mohammed Qadir Ismael

The performance of the pavement in terms of vehicle safety and tire wear is affected by the friction behavior of the pavement. To highlight the main characteristics that affect the production of better friction resistance of the pavement surface in this work. The micro-texture and macro-texture of the asphalt surface of Baghdad Airport highway were studied using two methods: (sand patch method and the British pendulum test). The sand patch was examined by drawing sand grains of a specific volume, while the micro-texture was analyzed using a BPT under dry and wet surface conditions. All data obtained from the two examinations were analyzed and modelled statistically using SPSS 25 software. Results show that skid resistance of pavement surface increase with the increase of MTD, this increase may be due to the increase of coarse aggregate which lead to increase the roughness of the pavement surface, this increase ranged between (96 - 91%). MTD decreases with the increase of traffic flow due to the friction between the road surface and the vehicle tires leading to increase of smoothness of the road surface. This is mean that MTD is highly affected by the traffic flow and this effectiveness ranged between (84-97%). Skid resistance also is highly affected by the traffic flow with an effectiveness ranged between (81-94%) for both pavement conditions. According to the regression analysis for friction and other parameters, it can be concluded that surface friction values are highly affected by cumulative traffic (asphalt mix deterioration) over time. Doi: 10.28991/cej-2021-03091775 Full Text: PDF


1986 ◽  
Vol 108 (3) ◽  
pp. 455-461
Author(s):  
J. C. Wambold ◽  
J. J. Henry

It is generally agreed that the friction between a tire and a wet pavement (skid resistance) is controlled by the surface texture characteristics. Therefore, by measuring the relevant parameters describing texture, or by measuring a physical process dependent on texture, regression techniques can be used to relate skid resistance to the chosen texture parameter or process. Two scales of texture are of particular importance: microtexture (small-scale asperities) and macrotexture (large-scale asperities). This paper describes work performed to: (1) review candidate macrotexture and microtexture measurement methods that can be made at highway speeds (at or about 64 km/h [40 mph]), which are presently used or have potential for use in pavement texture measurement; (2) design and build a prototype of the most promising method; and (3) evaluate the effects of pavement surface texture on skid resistance. A prototype noncontact vision system that makes texture measurements at highway speeds was developed, and several improvements were made to upgrade the system to provide an improved prototype. Both hardware and software enhancements have yielded a texture measurement system that can obtain pavement macrotexture data in a fast, efficient, and reliable way.


2014 ◽  
Vol 1052 ◽  
pp. 352-357 ◽  
Author(s):  
Jiu Peng Zhang ◽  
Guo Qiang Liu ◽  
Peng Zhi Wang

EACCP is a new-type cement concrete pavement with better skid-resistance and less traffic noise. In this paper, skid-resistance and noise-reducing performance of EACCP are tested and analyzed by laboratory and outdoor tests. The results indicate that the relationship between BPN and EAD is followed the parabola variation laws. With the increase of EAD, TD decreases. And skid-resistance value exists the extremum. If BPN is targeted as skid-resistance optimization goal for pavement surface features, the optimized EAD is existed and approximately to 40~60. The relationship between BPN and TD is also followed the parabola variation laws which also suggests the existence of the optimized TD scope approximately to 0.8~1.0mm.The relationship between TD and EAD can be simulated by index variation laws. With the increase of EAD, TD decreases, which proves the evident noise-reducing performance of EACCP. And the reduction amplitude of noise increases with vehicular acceleration.


Author(s):  
Rebekka Kienle ◽  
Wolfram Ressel ◽  
Tobias Götz ◽  
Markus Weise

Due to their influence on traffic safety, skid resistance and drainage are important surface properties of a road and their optimization and durability is still focus of ongoing research. Under wet conditions, these two characteristics are connected as a wetted road cannot provide a sufficient skid resistance without a working drainage system. The wet friction is mainly affected by the road surface geometry and the water depth. Herein, we describe a novel numerical approach to study the influence of the surface texture – mainly the microtexture – on the wet friction coefficient. This method is based on the hysteresis effect, which is the main friction force on rough surfaces under wet conditions. We therefore use an already established friction model for dry surfaces and extend its range of application by an additional consideration of water films. A drainage model has been developed to calculate the water film thickness for a given road surface and geometry (pavement surface runoff model) as systematic measurements of water film thicknesses in situ are difficult. The water depth determines the number of contact points between the pavement and the tyre. Based on three-dimensional measurements of a surface texture, the friction coefficient is calculated. By this newly developed model approach, it is possible to identify the main factors influencing wet skid resistance in regard to the pavement surface microtexture and the water film thickness.


Materials ◽  
2019 ◽  
Vol 12 (23) ◽  
pp. 3821 ◽  
Author(s):  
Peng ◽  
Li ◽  
Zhan ◽  
Wang ◽  
Yang

Skid resistance is an important surface characteristic that influences roadway safety. Various studies have been performed to understand the interaction between pavement and tires through numerical simulation for skid resistance prediction. However, the friction parameters required for simulation inputs are generally determined by objective assumptions. This paper develops a finite element method (FEM)-based skid resistance simulation framework using in-situ 3D pavement surface texture and skid resistance data. A 3D areal pavement model is reconstructed from high resolution asphalt pavement surface texture data. The exponential decay friction model is implemented in the simulation and the interface friction parameters required for the simulation are determined using the binary search back-calculation approach based on a trial process with the desired level of differences between simulated and observed skid numbers. To understand the influence of texture characteristics on interface friction parameters, the high-resolution 3D texture data is separated into macro- and micro-scales through Butterworth filtering and various areal texture indicators are calculated at both levels. Principal component analysis (PCA) regression analysis is conducted to quantify the relationship between various texture characteristics and the interface friction parameters. The results from this study can be used to better prepare the inputs of friction parameters for FEM simulation.


Author(s):  
David A. Kuemmel ◽  
John R. Jaeckel ◽  
Alexander Satanovsky ◽  
Stephen F. Shober ◽  
Mitzi M. Dobersek

Twelve portland cement concrete pavement (PCCP) test sections were constructed to compare with standard PCCP and asphaltic concrete pavement (ACP) to quantify the effects of the pavement surface texture on noise, safety, and winter maintenance. Asphalt pavements studied included a Strategic Highway Research Program asphalt, stone matrix asphalt (SMA), and Wisconsin standard asphalt. A dependency between the pavement textures and their noise characteristics was observed. Noise measurements indicated that uniformly transverse tined PCCP created dominant noise frequencies that were audible adjacent to the road and inside the test vehicles. Careful design and construction of transversely tined PCCP can reduce tire-road noise. No significant acoustical advantages of open-graded asphalts over the standard dense asphalt were found. The results of this research are preliminary and have not yet been approved by the Wisconsin Department of Transportation Council on Research.


2019 ◽  
Vol 10 (1) ◽  
pp. 32 ◽  
Author(s):  
Bruno Crisman ◽  
Giulio Ossich ◽  
Paolo Bevilacqua ◽  
Roberto Roberti

Steel production wastes (steel slags) are used more often in asphalt concrete pavements as a valuable replacement for natural aggregates, which are becoming increasingly rare. In this paper authors investigate the polishing characteristics of aggregates, and in particular of steel slags, used in bituminous road surfacing, are a major factor in determining the resistance to skidding. The main purpose of the study is the identification of a suitable degradation model, based on friction indicators, in the laboratory, as well as the comparison of in-situ pavement skid resistance with the cumulative number of passing vehicles over the years. The model predicts the expected resistance to skidding of the road surface based on the knowledge of the polished stone value (PSV) of the aggregates and the expected traffic on the road. In this study, several types of aggregates were compared: steel slag, limestone, limestone and slag mixture, diabase, Criggion stone and basalt. Using a standard PSV test, it was found that the aggregates did not reach the lower value of skid resistance (equilibrium value). The analysis of the British Portable Number (BPN) data versus polishing time allowed to empirically derive a regression model for each investigated aggregate. Hence, it appears possible to define both an investigatory level and threshold level to predict the actual residual life of the pavement from the examination of skid resistance.


Sign in / Sign up

Export Citation Format

Share Document