scholarly journals Developing Floating Constructed Wetland in Laboratory Scale as Domestic Waste Contaminant Reductor in Urban Waters

2021 ◽  
Vol 27 (1) ◽  
pp. 118-126
Author(s):  
Rian Mantasa Salve Prastica ◽  
Muhammad Sulaiman

Low awareness of sanitation of urban citizens creates negative effects on the environment which varied. The triggering factors of the phenomenon are education and conservation technology. A conservation technology, eco-technology e.g. constructed wetlands, is proposed to solve the problem. Laboratory work is conducted to obtain comprehensive analysis about floating constructed wetland. The research paper aims to illustrate the efficiency performance of constructed wetlands, with domestic species, in the lab-scaled area from urban wastewater. The constructed wetland media is prepared horizontally. The analysis of its performance leads to a discussion of urban water quality. Samplings and laboratory tests are conducted to examine pH, phosphorus, nitrogen, suspended solids, conductivity, COD, and BOD. The benefit of Nasturtium officinale as FTW media reduce phosphate, nitrate, and BOD as 100% in 14 days. The discharge simulation during 14 days reduce TDS and TSS as 100%.

1995 ◽  
Vol 32 (3) ◽  
pp. 59-67 ◽  
Author(s):  
Kevin D. White

Constructed wetland technology is currently evolving into an acceptable, economically competitive alternative for many wastewater treatment applications. Although showing great promise for removing carbonaceous materials from wastewater, wetland systems have not been as successful at nitrification. This is primarily due to oxygen limitations. Nitrification does occur in conventional wetland treatment systems, but typically requires long hydraulic retention times. This paper describes a study that first evaluated the capability of subsurface flow constructed wetlands to treat a high strength seafood processor wastewater and then evaluated passive aeration configurations and effluent recirculation with respect to nitrogen treatment efficiency. The first stage of a 2-stage wetland treatment system exhibited a relatively short hydraulic retention time and was designed for BOD removal only. The second stage wetland employed an unsaturated inlet zone and effluent recirculation to enhance nitrification. Results indicate that organic loading, and thus BOD removal, in the first stage wetland is key to optimal nitrification. Passive aeration through an unsaturated inlet zone and recirculation achieved up to 65-70 per cent ammonia nitrogen removal at hydraulic retention times of about 3.5 days. Inlet zone configuration and effluent recirculation is shown to enhance the nitrogen removal capability of constructed wetland treatment systems.


Archaea ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Xiu-lu Lang ◽  
Xiang Chen ◽  
Ai-ling Xu ◽  
Zhi-wen Song ◽  
Xin Wang ◽  
...  

Microorganisms play important roles in the reduction of organic and inorganic pollutants in constructed wetlands used for the treatment of wastewater. However, the diversity and structure of microbial community in constructed wetland system remain poorly known. In this study, the Illumina MiSeq Sequencing of 16S rDNA was used to analyze the bacterial and archaeal microbial community structures of soil and water in a free surface flow constructed wetland, and the differences of bacterial communities and archaeal compositions between soil and water were compared. The results showed that the Proteobacteria were the dominant bacteria, making up 35.38%~48.66% relative abundance. Euryarchaeotic were the absolute dominant archaea in the influent sample with the relative abundance of 93.29%, while Thaumarchaeota showed dominance in the other three samples, making up 50.58%~75.70%. The relative abundances of different species showed great changes in bacteria and archaea, and the number of dominant species in bacteria was much higher than that in archaea. Compared to archaea, the community compositions of bacteria were more abundant and the changes were more significant. Meanwhile, bacteria and archaea had large differences in compositions between water and soil. The microbial richness in water was significantly higher than that in soil. Simultaneously, soil had a significant enrichment effect on some microbial flora.


RSC Advances ◽  
2016 ◽  
Vol 6 (41) ◽  
pp. 34841-34848 ◽  
Author(s):  
Yan Kang ◽  
Jian Zhang ◽  
Huijun Xie ◽  
Zizhang Guo ◽  
Pengfei Li ◽  
...  

An improved constructed wetland (CW) with the addition ofTubifex tubifexin winter was studied in laboratory batch systems. The outcomes of this study indicate that the potential use ofTubifex tubifexcould improve the ecosystem and water purification by CWs in winter.


2010 ◽  
Vol 62 (10) ◽  
pp. 2408-2418 ◽  
Author(s):  
C. Y. Wu ◽  
J. K. Liu ◽  
S. H. Cheng ◽  
D. E. Surampalli ◽  
C. W. Chen ◽  
...  

In Taiwan, more than 20% of the major rivers are mildly to heavily polluted by domestic, industrial, and agricultural wastewaters due to the low percentage of sewers connected to wastewater treatment plants. Thus, constructed or engineered wetlands have been adopted as the major alternatives to clean up polluted rivers. Constructed wetlands are also applied as the tertiary wastewater treatment systems for the wastewater polishment to meet water reuse standards with lower operational costs. The studied Kaoping River Rail Bridge Constructed Wetland (KRRBCW) is the largest constructed wetland in Taiwan. It is a multi-function wetland and is used for polluted creek water purification and secondary wastewater polishment before it is discharged into the Kaoping River. Although constructed wetlands are feasible for contaminated water treatment, wetland sediments are usually the sinks for organics and metals. In this study, water and sediment samples were collected from the major wetland basins in KRRBCW. The investigation results show that more than 97% of total coliforms (TC), 55% of biochemical oxygen demand (BOD), and 30% of nutrients [e.g. total nitrogen (TN), total phosphorus (TP)] were removed via the constructed wetland system. However, results from the sediment analyses show that wetland sediments contained high concentrations of metals (e.g. Cu, Fe, Zn, Cr, and Mn), organic contents (sediment oxygen demand = 1.7 to 7.6 g O2/m2 d), and nutrients (up to 18.7 g/kg of TN and 1.22 g/kg of TN). Thus, sediments should be excavated periodically to prevent the release the pollutants into the wetland system and causing the deterioration of wetland water quality. Results of polymerase chain reaction (PCR), denaturing gradient gel electrophoresis (DGGE), and nucleotide sequence analysis reveal that a variation in microbial diversity in the wetland systems was observed. Results from the DGGE analysis indicate that all sediment samples contained significant amounts of microbial ribospecies, which might contribute to the carbon degradation and nitrogen removal. Gradual disappearance of E. coli was also observed along the flow courses through natural attenuation mechanisms.


Author(s):  
Isabela Pires da Silva ◽  
Gabriela Barbosa da Costa ◽  
João Gabriel Thomaz Queluz ◽  
Marcelo Loureiro Garcia

   This study evaluated the effect of hydraulic retention time on chemical oxygen demand (COD) and total nitrogen (TN) removal in an intermittently aerated constructed wetlands. Two horizontal subsurface-flow constructed wetlands were used: one without aeration and the other aerated intermittently (1 hour with aeration/7 hours without aeration). Both systems were evaluated treating domestic wastewater produced synthetically. The flow rate into the two CWs was 8.6 L day-1 having a hydraulic retention time of 3 days. The results show that the intermittently aerated constructed wetland were highly efficient in removing COD (98.25%), TN (83.60%) and total phosphorus (78.10%), while the non-aerated constructed wetland showed lower efficiencies in the removal of COD (93.89%), TN (48.60%) and total phosphorus (58.66). These results indicate, therefore, that intermittent aeration allows the simultaneous occurrence of nitrification and denitrification processes, improving the removal of TN in horizontal subsurface-flow constructed wetlands. In addition, the use of intermittent aeration also improves the performance of constructed wetlands in removing COD and total phosphorus.


1995 ◽  
Vol 32 (3) ◽  
pp. 193-202 ◽  
Author(s):  
F. J. Sikora ◽  
Tong Zhu ◽  
L. L. Behrends ◽  
S. L. Steinberg ◽  
H. S. Coonrod

From June 1993 through February 1994, the removal of NH4-N was evaluated in constructed wetlands at the TVA constructed wetland research facility in Muscle Shoals, AL. The objectives were to determine rates for NH4-N removal and speculate on potential mechanisms for removal. Nine constructed wetland cells were used with approximate dimensions of 9.1 × 6.1 × 0.6 m3 and a recirculating subsurface flow system in a gravel base. Treatments consisted of an unplanted (WO=control) and two polycultural planting schemes (P1=Scirpus acutus, Phragmites communis and Phalaris arundinacea; P2=Typha sp., Scirpus atrovirens georgianus and Scirpus cyperinus) replicated 3 times. Salt solutions were added and recirculated in each cell resulting in initial concentrations of 50 and 300 mg l−1 of NH4-N and COD, respectively, when fully diluted with wetland water. Salts were added to wetlands approximately every 6 weeks with the first addition on June 1, 1993 and the last addition on February 9, 1994 for a total of 6 time periods (times I, II, III, IV, V and VI). The COD of the waters was removed at rates ranging from 5.5 to 10 g/m2/d during times I through IV with no discernible difference amongst the planting treatments. Wetland cells with P1 were more efficient at removing NH4-N (1.1 g/m2/d) than P2 (0.6 g/m2/d) or WO (0.5 g/m2/d) at time I with differences decreasing by time IV (0.3 to 0.7 g/m2/d). During the winter (times V and VI), there were no differences in NH4-N removal amongst planting treatments with an average removal rate of 0.35 g/m2/d. There was a seasonal change in NH4-N removal in all the treatments, with the change most noticeable in the planted cells. The removal of NH4-N in WO was speculated to be due to a combination of sorption onto gravel, microbial assimilation, and nitrification at the air-water interface. The extra NH4-N removal in the planted cells diminished in the winter because the removal was most likely due to a combination of enhanced nitrification from O2 transport and NH4-N uptake mediated by seasonal macrophyte growth.


2020 ◽  
Vol 6 (12) ◽  
pp. 3326-3340
Author(s):  
Manoj Kumar ◽  
Rajesh Singh

In this study, two-phase continuous vertical flow constructed wetlands were installed with a pre-cleaner bioelectrochemical system for the removal of NH4+-N (60.41–85.78%), NO3−-N (25.55–35.18%), TN (57.80–84.65%), TKN (37.24–70.08%), PO43−-P (38.89–63.40%), SO42− (49.53–76.06%), and COD (25.83–74.70%) from municipal wastewater.


2001 ◽  
Vol 44 (11-12) ◽  
pp. 381-386 ◽  
Author(s):  
R.R. Shrestha ◽  
R. Haberl ◽  
J. Laber ◽  
R. Manandhar ◽  
J. Mader

Surface water pollution is one of the serious environmental problems in urban centers in Nepal due to the discharge of untreated wastewater into the river-system, turning them into open sewers. Wastewater treatment plants are almost non-existent in the country except for a few in the Kathmandu Valley and even these are not functioning well. Successful implementation of a few constructed wetland systems within the past three years has attracted attention to this promising technology. A two-staged subsurface flow constructed wetland for hospital wastewater treatment and constructed wetlands for treatment of greywater and septage is now becoming a demonstration site of constructed wetland systems in Nepal. Beside these systems, five constructed wetlands have already been designed and some are under construction for the treatment of leachate and septage in Pokhara municipality, wastewater in Kathmandu University, two hospitals and a school. This paper discusses the present condition and treatment performance of constructed wetlands that are now in operation. Furthermore, the concept of the treatment wetlands under construction is also described here. With the present experience, several recommendations are pointed out for the promotion of this technology in the developing countries.


Sign in / Sign up

Export Citation Format

Share Document