scholarly journals Cost-Effective Remote Operated Vehicle

Author(s):  
Zachary Smolder ◽  
Jingang Yi

Remote operated vehicles (ROVs) are robotic submersibles controlled typically by a person at the surface of a water body. ROVs can be applied to surveillance, environmental, and data recording jobs or tasks. The vehicle design may be modified to remove or add additional capabilities depending upon the specific purpose of the ROV. In this paper, we explore using remote operated vehicles as a cheap and affordable water exploration platform. ROV’s high cost is a prohibitive barrier to entry, preventing widespread adoption of ROV for personal, research, and conservation uses. To address this problem, our paper explores a cost effective ROV with video capturing and directional control capabilities. Using state-of-the-art robotic technologies, a cost-effective competitive ROV is designed and constructed. This ROV was tested to a depth of 7 meters and has the potential to reach depths of up to 30 meters per its design.

1996 ◽  
Vol 17 (12) ◽  
pp. 441-447
Author(s):  
Thom E Lobe

The pediatrician must be cognizant of the extensive applications of endoscopic surgery in the pediatric patient. The ability to provide either outpatient surgery or short-stay surgery appears to be cost-effective and appropriate state-of-the-art medical care. As the array of surgical instruments continues to evolve, new and innovative endoscopic procedures will become increasingly available.


2021 ◽  
Vol 43 ◽  
pp. e58283
Author(s):  
Clístenes Williams Araújo do Nascimento ◽  
Caroline Miranda Biondi ◽  
Fernando Bruno Vieira da Silva ◽  
Luiz Henrique Vieira Lima

Soil contamination by metals threatens both the environment and human health and hence requires remedial actions. The conventional approach of removing polluted soils and replacing them with clean soils (excavation) is very costly for low-value sites and not feasible on a large scale. In this scenario, phytoremediation emerged as a promising cost-effective and environmentally-friendly technology to render metals less bioavailable (phytostabilization) or clean up metal-polluted soils (phytoextraction). Phytostabilization has demonstrable successes in mining sites and brownfields. On the other hand, phytoextraction still has few examples of successful applications. Either by using hyperaccumulating plants or high biomass plants induced to accumulate metals through chelator addition to the soil, major phytoextraction bottlenecks remain, mainly the extended time frame to remediation and lack of revenue from the land during the process. Due to these drawbacks, phytomanagement has been proposed to provide economic, environmental, and social benefits until the contaminated site returns to productive usage. Here, we review the evolution, promises, and limitations of these phytotechnologies. Despite the lack of commercial phytoextraction operations, there have been significant advances in understanding phytotechnologies' main constraints. Further investigation on new plant species, especially in the tropics, and soil amendments can potentially provide the basis to transform phytoextraction into an operational metal clean-up technology in the future. However, at the current state of the art, phytotechnology is moving the focus from remediation technologies to pollution attenuation and palliative cares.


2021 ◽  
Author(s):  
Lin Li ◽  
Biswanath Das ◽  
Ahibur Rahaman ◽  
Andrey Shatskiy ◽  
Fei Ye ◽  
...  

Electrochemical water splitting constitutes one of the most promising strategies for converting water into hydrogen-based fuels, and this technology is predicted to play a key role in our transition towards a carbon-neutral energy economy. To enable the design of cost-effective electrolysis cells based on this technology, new and more efficient anodes with augmented water splitting activity and stability will be required. Herein, we report an active molecular Ru-based catalyst for electrochemically-driven water oxidation and two simple methods for preparing anodes by attaching this catalyst onto multi-walled carbon nanotubes. The anodes modified with the molecular catalyst were characterized by a broad toolbox of microscopy and spectroscope techniques, and interestingly no RuO2 formation was detected during electrocatalysis over 4 h. These results demonstrate that the herein presented strategy can be used to prepare anodes that rival the performance of state-of-the-art metal oxide anodes.


Author(s):  
S. Crommelinck ◽  
B. Höfle ◽  
M. N. Koeva ◽  
M. Y. Yang ◽  
G. Vosselman

Unmanned aerial vehicles (UAV) are evolving as an alternative tool to acquire land tenure data. UAVs can capture geospatial data at high quality and resolution in a cost-effective, transparent and flexible manner, from which visible land parcel boundaries, i.e., cadastral boundaries are delineable. This delineation is to no extent automated, even though physical objects automatically retrievable through image analysis methods mark a large portion of cadastral boundaries. This study proposes (i) a methodology that automatically extracts and processes candidate cadastral boundary features from UAV data, and (ii) a procedure for a subsequent interactive delineation. Part (i) consists of two state-of-the-art computer vision methods, namely gPb contour detection and SLIC superpixels, as well as a classification part assigning costs to each outline according to local boundary knowledge. Part (ii) allows a user-guided delineation by calculating least-cost paths along previously extracted and weighted lines. The approach is tested on visible road outlines in two UAV datasets from Germany. Results show that all roads can be delineated comprehensively. Compared to manual delineation, the number of clicks per 100 m is reduced by up to 86 %, while obtaining a similar localization quality. The approach shows promising results to reduce the effort of manual delineation that is currently employed for indirect (cadastral) surveying.


Author(s):  
R. Peter Weaver ◽  
Dan Katz ◽  
Tushar Prabahakar ◽  
Katie A. Corcoran

Abstract We are now living in what has been described as the Experience Era, where lines between the digital and physical are increasingly blurred. As such, we are just beginning to see how customized access to space will improve asset stewardship in ways that are still evolving, as customization of on-orbit technology pushes the bounds of how we receive and process information. Specific to oil and gas operators, one technology being launched by microsatellite, hyperspectral imagery (HSI), is poised to enable unparalleled daily global pipeline leak prevention, detection and speciation, intrusion and change detection capabilities. This will replace conventional DOT pipeline patrol for compliance while contributing to our understanding of vapor emissions as regulated by the Environmental Protection Agency. This paper discusses both the evolving space marketplace and the state of the art for HSI, including current examples of hyperspectral findings regarding pipeline and terminal leaks. Successful deployment of HSI will drive a decrease in the number and magnitude of pipeline leaks using persistent, global, high-resolution data collection, rapid and reliable analysis, and immediate reporting of actionable information. For decades, satellite HSI technology has offered a promise of remote hydrocarbon detection and other features of interest. It is only now becoming scalable, accessible to, and cost-effective for the pipeline industry, and thus a reality for cost-effective pipeline stewardship.


2021 ◽  
Author(s):  
Hamed Pourzolfaghar ◽  
Soraya Hosseini ◽  
Marziyeh Alinejad

Addition of the organic additives to the electrolyte is one of the state-of-the-art and cost-effective solutions to develop an appropriate rechargeable ZABs able to be promoted towards commercial application. In this mini review, some of the most important organic additives have been reviewed and their functions in the zinc air batteries have been investigated.


2020 ◽  
Vol 10 (8) ◽  
pp. 2955 ◽  
Author(s):  
Styliani Papatzani ◽  
Kevin Paine

In an effort to produce cost-effective and environmentally friendly cementitious binders. mainly ternary (Portland cement + limestone + pozzolanas) formulations have been investigated so far. Various proportions of constituents have been suggested, all, however, employing typical Portland cement (PC) substitution rates, as prescribed by the current codes. With the current paper a step by step methodology on developing low carbon footprint binary, ternary and quaternary cementitious binders is presented (PC replacement up to 57%). Best performing binary (60% PC and 40% LS (limestone)) and ternary formulations (60% PC, 20% LS, 20% FA (fly ash) or 43% PC, 20% LS 37% FA) were selected on the grounds of sustainability and strength development and were further optimized with the addition of silica fume. For the first time a protocol for successfully selecting and testing binders was discussed and the combined effect of highly pozzolanic constituents in low PC content formulations was assessed and a number of successful matrices were recommended. The present paper enriched the current state of the art in composite low carbon footprint cementitious binders and can serve as a basis for further enhancements by other researchers in the field.


2019 ◽  
Vol 21 (1) ◽  
pp. 1-31 ◽  
Author(s):  
Lindong Weng ◽  
Shannon L. Stott ◽  
Mehmet Toner

Successful stabilization and preservation of biological materials often utilize low temperatures and dehydration to arrest molecular motion. Cryoprotectants are routinely employed to help the biological entities survive the physicochemical and mechanical stresses induced by cold or dryness. Molecular interactions between biomolecules, cryoprotectants, and water fundamentally determine the outcomes of preservation. The optimization of assays using the empirical approach is often limited in structural and temporal resolution, whereas classical molecular dynamics simulations can provide a cost-effective glimpse into the atomic-level structure and interaction of individual molecules that dictate macroscopic behavior. Computational research on biomolecules, cryoprotectants, and water has provided invaluable insights into the development of new cryoprotectants and the optimization of preservation methods. We describe the rapidly evolving state of the art of molecular simulations of these complex systems, summarize the molecular-scale protective and stabilizing mechanisms, and discuss the challenges that motivate continued innovation in this field.


Sign in / Sign up

Export Citation Format

Share Document