scholarly journals Effects of Twist1 on drug resistance of chronic myeloid leukemia cells through the PI3K/AKT signaling pathway

2020 ◽  
Vol 66 (6) ◽  
pp. 81
Author(s):  
Ruilan Yuan ◽  
Jin Chang ◽  
Jianxia He
2018 ◽  
Vol 47 (3) ◽  
pp. 981-993 ◽  
Author(s):  
Yu Chen ◽  
Tongtong Wang ◽  
Jing Du ◽  
Yanchun Li ◽  
Xin Wang ◽  
...  

Background/Aims: Chronic myeloid leukemia (CML) is a myeloproliferative neoplasm. Tyrosine kinase inhibitors (TKIs) are commonly used to treat CML; however, drug resistance of CML cells to TKIs has limited their clinical application. Shikonin, a traditional Chinese herb, has long been used to treat leukemia in China, but the roles and related molecular mechanisms of shikonin treatment in CML remain unclear. Here, we aimed to evaluate the effects of shikonin on the proliferation, apoptosis, and migration of K562 cells, a CML cell line. Methods: Firstly, K562 cell proliferation and apoptosis were tested by CCK8 assay and flow cytometry with Annexin V-FITC/PI staining. Cell migration was measured by Transwell migration assay. In addition, western blot was performed to determine the proteins (PI3K, Bax, Bcl-2, cleaved caspase-3, PTEN, p-AKT, AKT, CXCR4, SDF-1, CD44) involved in the mechanism of action of shikonin. Finally, neutrophils from peripheral blood of CML patients were obtained, and cell proliferation and apoptosis were tested by CCK8 assay and flow cytometry. Results: Shikonin reduced the proliferation of K562 cells in a time- and dose-dependent manner and promoted the apoptosis of K562 cells. Moreover, shikonin increased the PTEN level and inactivated the PI3K/AKT signaling pathway, subsequently upregulating BAX in K562 cells. In addition, shikonin could block K562 cell migration via the CXCR4/SDF-1 axis. Finally, shikonin significantly inhibited the proliferation and promoted the apoptosis of neutrophils from CML patients. Conclusion: These results demonstrated that shikonin inhibits CML proliferation and migration and induces apoptosis by the PTEN/PI3K/AKT pathway, revealing the effects of shikonin therapy on CML.


2021 ◽  
Vol 17 (1) ◽  
pp. 152-165 ◽  
Author(s):  
Binshen Chen ◽  
Yiming Zhang ◽  
Chaoming Li ◽  
Peng Xu ◽  
Yubo Gao ◽  
...  

IntroductionTherapy options for prostate cancer (PCa) typically are centered on docetaxel-based chemotherapy but are limited by the effects of multi-drug resistance. Recent advances have illustrated a role of contactin-1 (CNTN-1) in tumor chemoresistance, while the function and mechanism of CNTN-1 in the resistance of docetaxel in prostate cancer have not yet been elucidated.Material and methodsDocetaxel (Dox)-resistant PCa cell lines of PC3 (PC3-DR) and DU145 (DU145-DR) were established, and short hairpin RNA (shRNA) constructs targeting CNTN-1 were generated to analyze the effect of knockdown of CNTN-1 on PCa progression. Cell Counting Kit-8 (CCK-8), flow cytometry, wound-healing, transwell and western blotting analysis were used to analyze cell proliferation, apoptosis, migration, invasion and related protein expression levels, respectively.ResultsKnockdown of CNTN-1 in PC3-DR and DU145-DR cells attenuated cell proliferation, migration, invasion, EMT phenotype, and drug resistance, and increased cell apoptosis further reduced the tumorigenic phenotype. Knockdown of CNTN-1 resulted in an anti-tumor effect in the xenograft tumor model, and decreased activity of the phosphoinositide 3-kinase (PI3K)/Akt signaling pathway both in vitro and in vivo.ConclusionsThe results of the present study suggest that downregulation of CNTN-1 may be an important mechanism to reverse chemoresistance in Dox-resistant PCa progression, thus shedding light on the development of novel anti-tumor therapeutics for the treatment of PCa.


Sign in / Sign up

Export Citation Format

Share Document