scholarly journals Conservation of Garcinia imberti Bourd. through seeds

2019 ◽  
Vol 6 (2) ◽  
pp. 243-251
Author(s):  
M Anto ◽  
M Angala ◽  
P S Jothish ◽  
C Anilkumar

Garcinia imberti seeds were collected during 2015-2017 from Shangili, Cheenikkala and Bonaccord evergreen forests of Agasthyamala Biosphere Reserve, the only abode of this endangered endemic species. Germinability of seeds were analysed through decoating, Gibberellic acid (GA3) and light inductive pre-treatments on fresh (62.8 % moisture content; MC) and desiccated (fast; 23.3% MC and slow; 30.5 % MC) seeds. The seed germination with impermeable coat (0.7-1.2 mm) was restricted which on decoating got enhanced. Application of GA3 along with exposure to light breaked dormancy within 4-6 days compared to non-treated seeds that took 238-254 days to germinate. Stored seeds behaviour revealed that seed moisture content and rate of germination were negatively correlated. Seed storage was found to be more efficient only up to 80 days at controlled seed banking conditions (20 ± 20C, 20 % relative humidity; RH). Both fast and slow desiccated seeds stored for 60 days in seed bank conditions exhibited 50.4 and 43.4 % of germination compared 39.4% germination of non-desiccated seeds. Hence fast desiccated and decoated G. imberti seeds pre-treated with GA3 on subsequent exposure to light alleviated dormancy. For seed banking, fast desiccated seeds with MC in between 40-20% are found to be promising.

HortScience ◽  
1995 ◽  
Vol 30 (5) ◽  
pp. 1003-1006 ◽  
Author(s):  
William J. Carpenter ◽  
Eric R. Ostmark ◽  
John A. Cornell

Various combinations of temperature and moisture contents were used in evaluating the seed storage of nine genera of annual flowers. Relative humidity (RH) levels of 11%, 32%, 52%, and 75% provided wide ranges in seed moisture during storage at 5, 15, and 25C. At each temperature, total germination percentages (G) generally declined as seed moisture content increased during storage. The seed moisture range giving the highest G after 12 months of storage was determined for each temperature and plant genus. For all genera, seed moisture contents during storage increased as storage temperatures increased at constant RH levels. Moisture contents at 25C storage were 37%, 34%, 29%, and 20% higher than at 5C when RH levels were at 11%, 32%, 52%, and 75%, respectively.


HortScience ◽  
1998 ◽  
Vol 33 (7) ◽  
pp. 1207-1209 ◽  
Author(s):  
Jian Fang ◽  
Frank Moore ◽  
Eric Roos ◽  
Christina Walters

Seed moisture content (MC) has been considered the most important factor controlling physiological reactions in seeds, and MC changes with relative humidity (RH) and temperature (T). This relationship is revealed by studying the interaction of RH and T at equilibrium. Cucumber (Cucumis sativus L.), lettuce (Lactuca sativa L.), maize (Zea mays L.), onion (Allium cepa L.), pea (Pisum sativum L.), and watermelon (Citrullus lanatus M. & N.) seeds were equilibrated over sulfuric acid (1% RH) and various saturated salt solutions (5.5% to 93% RH) at temperatures from 5 to 50 °C. Best-fit subset models were selected from the complete third-order model MC = β0 + β1*RH + β2*T + β3*RH2 + β4*T2 + β5*RH*T + β6*RH3 + β7*T3 + β8*RH*T2 + β9*RH2*T, using Mallows' minimum Cp as the selection criterion. All six best subset models (R2, 0.98 to 0.99) had the same functional form, MC = β0 + β1*RH + β2*T + β3*RH2 + β5*RH*T + β6*RH3 + β9*RH2*T. Coefficients had essentially the same respective values among all species except onion and pea, for which some coefficients were statistically different from those of the other species (P ≤ 0.05). All models indicated that seed MC increased as RH increased and decreased as T increased; but RH had the greater influence. The inverse relationship between seed MC and T, although slight, was evident in the response surfaces. The interaction effect of RH and T on MC was significant at P ≤0.001. These results suggest that orthodox seed species respond similarly to T and RH. This in turn suggests that a common model could be developed and used for optimizing seed storage environments.


2004 ◽  
Vol 22 (1) ◽  
pp. 62
Author(s):  
A P Tyagi ◽  
M Taylor ◽  
P C Deo

Two taro (Colocasia esculenta (L.) Schott var. esculenta) cultivars from Fiji and Papua New Guinea were grown at the University of the South Pacific, Laucala Campus, Fiji to produce seeds for seed storage experiments. Gibberellic acid at a 500ppm concentration was used to induce flowering. Very few flowering shoots (inflorescence) were observed in the Fiji cultivar and all pollinations were unsuccessful. However the PNG cultivar flowered well and was used to obtain seed after hand pollination. Hand pollination was carried out to ensure seed setting in developing fruits in the inflorescence. Seeds were extracted in the laboratory after harvesting mature inflorescences. Experiments were conducted on seed moisture content, desiccation, germination, seedling development and seed storage behaviour of taro (Colocasia esculenta) seeds. Seed moisture content was determined using oven methods and air-drying. Results demonstrated that taro seeds have a moisture content of 12-13% after air-drying for three to four weeks. Seeds were dried to desired moisture contents in a desiccator over silica gel. After drying to 5% moisture content seed viability was tested by germinating seeds on moist filter paper at room temperature with 65% relative humidity and seven to eight hours day length. Preliminary seed germination tests demonstrated up to 83% germination for seeds with 13% moisture content. Germination occurred within five to seven days. Maximum germination was achieved within 21 days. The highest germination (80%) was achieved with seeds with 12% moisture content. Results indicated there was no relationship between moisture content and seed germination. Normal seedling development and growth was recorded after germination.


2021 ◽  
Vol 27 (3) ◽  
pp. 162-166
Author(s):  
Abdul Azeez Hussain ◽  
◽  
Ramachandra Kurup Rajvikraman ◽  

Detailed study on seed storage and germination trailed in Knema attenuata (Wall. ex Hook. f. & Thomson) Warb.– the IUCN Red Listed ‘least concern’ medicinal tree species revealed that seeds were of recalcitrant nature. Viability of the seeds could be maintained for a longer period of up to 6 months with 47% Moisture content (mc) when kept in closed polycarbonate bottles at seed bank condition [20±20C Temp. and 40% Relative Humidity (RH)]. The 55% seed germination under normal climatic condition could be enhanced to a much higher percentage (75±5) inside the mist house chamber (34±30C Temp. and 70-80% RH).


HortScience ◽  
2005 ◽  
Vol 40 (3) ◽  
pp. 782-785 ◽  
Author(s):  
Wayne A. Mackay

Seeds of Lupinus havardii Wats. and L. texensis Hook. were subjected to scarification, storage temperature (4 or 22 °C), and relative humidity (RH) treatments (11%, 23%, 52%, 75%, or 97% RH) for 12 months. Seed moisture increased as relative humidity increased with scarified seed having the greatest increase in seed moisture content regardless of storage temperature. For both species, the combination of seed scarification before storage, 75% RH, and 22 °C storage temperature resulted in a significant and rapid decline in germinability beginning at 4 months. Scarified L. texensis seed stored at 52% RH and 22 °C also exhibited a significant decline in germinability following 6 months storage. Seed of both species stored under all other conditions germinated similar to or higher than the initial germination rate after 12 months. These results clearly show that scarification can be performed before seed packaging as long as the seed packets are stored at ≤23% RH under 4 or 22 °C with no loss in germinability for at least 1 year.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
A. Suma ◽  
Kalyani Sreenivasan ◽  
A. K. Singh ◽  
J. Radhamani

The role of relative humidity (RH) while processing and storing seeds ofBrassicaspp. andEruca sativawas investigated by creating different levels of relative humidity, namely, 75%, 50%, 32%, and 11% using different saturated salt solutions and 1% RH using concentrated sulphuric acid. The variability in seed storage behaviour of different species ofBrassicawas also evaluated. The samples were stored at40±2°Cin sealed containers and various physiological parameters were assessed at different intervals up to three months. The seed viability and seedling vigour parameters were considerably reduced in all accessions at high relative humidity irrespective of the species. Storage at intermediate relative humidities caused minimal decline in viability. All the accessions performed better at relative humidity level of 32% maintaining seed moisture content of 3%. On analyzing the variability in storage behaviour,B. rapaandB. junceawere better performers thanB. napusandEruca sativa.


2016 ◽  
Vol 34 (3) ◽  
pp. 219
Author(s):  
Ari Wahyuni ◽  
M. R. Suhartanto ◽  
Abdul Qadir

<p>Soybean seed viability declines during seed storage. Soybean seed deteriorates rapidly, affected by its high protein content and often high humidity in the tropical environment. This research was aimed to develop dynamic model of soybean seed viability in an open storage. The study was conducted in three stages, namely: 1) desk study, 2) seed storage experiment, 3) development of seed storage model, simulation and verification of the model. The second stage of the experiment consisted of soybean seed storing and germination testing using completely randomized design. Treatments were three initial moisture content (7-8%, 9-10% and 11-12%) and four varieties of soybean (Anjasmoro, Wilis, Detam-1 and Detam-2). The results showed that the seed behaviour during storage period were affected by initial seed moisture content, initial viability, varieties and environmental condition. Therefore, seed moisture content, initial viability and varieties may be used as input model. Moisture content, integreting seed respiration, electric conductivity and seed storability vigor (VDSDB) were as model output. Simulation of Seed Storability Vigor Prediction Model with Model Construction Layer-Stella (MCLS) using relative humidity (RH), temperature, seed permeability, initial moisture content and initial viability as input model could logically predict the seed moisture content and seed storability vigor (VDSDB).</p>


Sign in / Sign up

Export Citation Format

Share Document