scholarly journals The hemostatic activity of Manilkara zapota (L.) P. Royen latex associated with fibrinogenolytic activity

2020 ◽  
Vol 7 (3) ◽  
pp. 469-475
Author(s):  
C G Kusuma ◽  
Vinod Gubbiveeranna ◽  
C K Sumachirayu ◽  
S Bhavana ◽  
H Ravikumar ◽  
...  

Manilkara zapota (L.) P. Royen (Sapotaceae), is widely used in traditional medicine for various ailments like, diarrhea, pulmonary diseases, piles, ulcers and to treat wounds. The present study evaluates the role of M. zapota latex in hemostasis. The processed latex named as M. zapota natant latex (MzNL), has proteins at the concentration of 8 mg/ml and showed protein bands in Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The proteolytic activity of MzNL was evaluated using casein in comparison with trypsin. The phenylmethylsulfonyl fluoride (PMSF) inhibited the protease activity indicating the possible presence of serine protease. The effect of temperature, pH and metal ions on proteolytic activity was evaluated. MzNL exhibited fibrinogenolytic activity by hydrolysing A? and B? subunits of fibrinogen. However, ? subunit remained resistant for hydrolysis. MzNL hydrolyzed all the subunits of collagen type I and IV at the concentration of 8 µg and 25 µg in 20 µl each respectively. MzNL showed procoagulant activity and is devoid of hemolytic activity. Fibrinogenolytic activity and procoagulant nature of MzNL suggests its possible role in blood coagulation that in turn restores hemostasis.

2019 ◽  
Vol 8 (3) ◽  
pp. 245-254
Author(s):  
Nia Lutfiana ◽  
◽  
Suharti Suharti ◽  
Evi Susanti ◽  
◽  
...  

The aim of this study was to characterize protease soluble collagen (PSC) obtained from milkfish scales, extraction using protease from proteolytic bacteria HTcUM7.1 isolate. The characterization included Fourier Transform Infra Red (FT-IR) spectra, Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis (SDS-PAGE) profile, Field Emission Scanning Electron Microscopy (FESEM), denaturation temperature by Differential Scanning Calorimetric (DSC) and solubility. The resulting PSC from milkfish scales has white color, fiber with a length of about 20-60 µm, FTIR spectra and SDS-PAGE profile showed that PSC was collagen Type I and denaturation temperature was 145.48 °C, with maximum solubility at pH 1-3 and 1-2 % NaCl. Its high denaturation temperature value allows the collagen to be applied in the fields of medicines and cosmetics.


2015 ◽  
Vol 83 (1) ◽  
pp. 115-124 ◽  
Author(s):  
Fabricio L Tulini ◽  
Nolwenn Hymery ◽  
Thomas Haertlé ◽  
Gwenaelle Le Blay ◽  
Elaine C P De Martinis

Lactic acid bacteria (LAB) can be isolated from different sources such as milk and cheese, and the lipolytic, proteolytic and glycolytic enzymes of LAB are important in cheese preservation and in flavour production. Moreover, LAB produce several antimicrobial compounds which make these bacteria interesting for food biopreservation. These characteristics stimulate the search of new strains with technological potential. From 156 milk and cheese samples from cow, buffalo and goat, 815 isolates were obtained on selective agars for LAB. Pure cultures were evaluated for antimicrobial activities by agar antagonism tests and for proteolytic activity on milk proteins by cultivation on agar plates. The most proteolytic isolates were also tested by cultivation in skim milk followed by sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) analysis of the fermented milk. Among the 815 tested isolates, three of them identified asStreptococcus uberis(strains FT86, FT126 and FT190) were bacteriocin producers, whereas four other ones identified asWeissella confusaFT424,W. hellenicaFT476,Leuconostoc citreumFT671 andLactobacillus plantarumFT723 showed high antifungal activity in preliminary assays. Complementary analyses showed that the most antifungal strain wasL. plantarumFT723 that inhibitedPenicillium expansumin modified MRS agar (De Man, Rogosa, Sharpe, without acetate) and fermented milk model, however no inhibition was observed againstYarrowia lipolytica. The proteolytic capacities of three highly proteolytic isolates identified asEnterococcus faecalis(strains FT132 and FT522) andLactobacillus paracaseiFT700 were confirmed by SDS–PAGE, as visualized by the digestion of caseins and whey proteins (β-lactoglobulin and α-lactalbumin). These results suggest potential applications of these isolates or their activities (proteolytic activity or production of antimicrobials) in dairy foods production.


1994 ◽  
Vol 77 (4) ◽  
pp. 1609-1616 ◽  
Author(s):  
K. S. McDonald ◽  
C. A. Blaser ◽  
R. H. Fitts

The effects of 1, 2, and 3 wk of hindlimb suspension (HS) on force-velocity and power characteristics of single rat soleus fibers were determined. After 1, 2, or 3 wk of HS, small fiber bundles were isolated, placed in skinning solution, and stored at -20 degrees C until studied. Single fibers were isolated and placed between a motor arm and force transducer, functional properties were studied, and fiber protein content was subsequently analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Additional fibers were isolated from soleus of control and after 1 and 3 wk of HS, and fiber type distribution and myosin light chain stoichiometry were determined from SDS-PAGE analysis. After 1 wk of HS, percent type I fibers declined from 82 to 74%, whereas hybrid fibers increased from 10 to 18%. Percent fast type II fibers increased from 8% in control and 1 wk of HS to 26% by 3 wk of HS. Most fibers showed an increased unloaded maximal shortening velocity (Vo), but myosin heavy chain remained entirely slow type I. The mechanism for increased Vo is unknown. There was a progressive decrease in fiber diameter (14, 30, and 38%) and peak force (38, 56, and 63%) after 1, 2, and 3 wk of HS, respectively. One week of HS resulted in a shift of the force-velocity curve, and between 2 and 3 wk of HS the curve shifted further such that Vo was higher than control at all relative loads < 45% peak isometric force. Peak absolute power output of soleus fibers progressively decreased through 2 wk of HS but showed no further change at 3 wk.(ABSTRACT TRUNCATED AT 250 WORDS)


Author(s):  
Hüseyin Arıkan ◽  
Nurşen Alpagut Keskin ◽  
Kerim Çiçek

In this study, with the aim of evaluating coagulant activities in the venom of M. xanthina, we analyzed venom proteins, digestion patterns of fibrinogen chains with venom and the effects of protease inhibitors on M. xanthina venom proteases using Tricine-sodium dodecyl sulfate polyacrylamide gel electrophoresis. Venom samples were obtained from four adult specimens of Montivipera xanthina collected in Gümüldür (Izmir, Turkey). SDS-PAGE analysis demonstrated that 17 protein bands in the range of 20–250 kDa were present. The specific digestion patterns of fibrinogen chains revealed that M. xanthina venom possesses fibrinogenolytic enzymes which could be included in coagulation processes during envenomation Fibrinogenolytic activity directed exclusively towards the Aa-chain with a time-dependent activity towards Bb-chains suggests the presence of both metalloproteinases and serine proteases in M. xanthine venom. In the present study, the occurrence and inhibition of fibrinogenolytic activity of M. xanthina venom were clearly observed. For further analysis, the isolation, identification, and characterization of individual venom components will provide insight into their function and biological roles.


Marine Drugs ◽  
2019 ◽  
Vol 17 (12) ◽  
pp. 708 ◽  
Author(s):  
Wen Zhang ◽  
Jiawen Zheng ◽  
Xiaoxiao Tian ◽  
Yunping Tang ◽  
Guofang Ding ◽  
...  

The structure of pepsin-solubilized collagen (PSC) obtained from the skin of Lophius litulon was analyzed using the sodium dodecylsulphate polyacrylamide gel electrophoresis (SDS-PAGE), Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). SDS-PAGE results showed that PSC from Lophius litulon skin was collagen type I and had collagen-specific α1, α2, β, and γ chains. FTIR results indicated that the infrared spectrum of PSC ranged from 400 to 4000 cm−1, with five main amide bands. SEM revealed the microstructure of PSC, which consisted of clear fibrous and porous structures. In vitro antioxidant studies demonstrated that PSC revealed the scavenging ability for 2,2-diphenyl-1-picrylhydrazyl (DPPH), HO·, O2−·, and ABTS·. Moreover, animal experiments were conducted to evaluate the biocompatibility of PSC. The collagen sponge group showed a good biocompatibility in the skin wound model and may play a positive role in the progression of the healing process. The cumulative results suggest that collagen from the skin of Lophius litulon has potential applications in wound healing due to its good biocompatibility.


Author(s):  
Cláudia Lúcia Oliveira Pinto1 ◽  
Solimar Gonçalves Machado ◽  
Rodrigo Rezende Cardoso ◽  
Rita Maria Alves ◽  
Maria Cristina Dantas Vanetti

The growth rate and the proteolytic activity of Pseudomonas fluorescens strains 07A and 041, isolated from cow’s milk, were evaluated at 2, 4, 7 and 10ºC. P. fluorescens promoted protein degradation during storage of milk samples as observed by Proteolytic activity measurement, sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and heat stability of milk. Casein hydrolysis resulted in loss of thermal stability of milk and in formation of fragments of low and medium molecular mass. Temperatures up to 10°C did notguarantee raw milk quality when contamination by P. fluorescens was equal or higher than 106 cfu/mL.


1992 ◽  
Vol 68 (05) ◽  
pp. 534-538 ◽  
Author(s):  
Nobuhiko Yoshida ◽  
Shingi Imaoka ◽  
Hajime Hirata ◽  
Michio Matsuda ◽  
Shinji Asakura

SummaryCongenitally abnormal fibrinogen Osaka III with the replacement of γ Arg-275 by His was found in a 38-year-old female with no bleeding or thrombotic tendency. Release of fibrinopeptide(s) by thrombin or reptilase was normal, but her thrombin or reptilase time in the absence of calcium was markedly prolonged and the polymerization of preformed fibrin monomer which was prepared by the treatment of fibrinogen with thrombin or reptilase was also markedly defective. Propositus' fibrinogen had normal crosslinking abilities of α- and γ-chains. Analysis of fibrinogen chains on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) in the system of Laemmli only revealed the presence of abnormal γ-chain with an apparently higher molecular weight, the presence of which was more clearly detected with SDS-PAGE of fibrin monomer obtained by thrombin treatment. Purified fragment D1 of fibrinogen Osaka III also seemed to contain an apparently higher molecular weight fragment D1 γ remnant on Laemmli gels, which was digested faster than the normal control by plasmin in the presence of [ethy-lenebis(oxyethylenenitrilo)]tetraacetic acid (EGTA).


2018 ◽  
Vol 26 (2) ◽  
pp. 058
Author(s):  
Anna P. Roswiem ◽  
Triayu Septiani

<em>Bahan<strong> </strong>baku untuk membuat baso adalah daging hewan, pada umumnya dari daging sapi, ayam, ikan dan babi. Di beberapa daerah di Indonesia terjadi kasus baso tikus. Tujuan penelitian ini adalah menguji ada tidaknya kandungan daging tikus pada produk baso yang dijual di pasar Cempaka Putih-Kecamatan Kramat Jakarta Pusat dan di pedagang baso atau mie baso di sekitar kampus Universitas YARSI Jakarta. Daging adalah protein salah satu metode untuk mengidentifikasi protein adalah metode Sodium Dodecyl Sulphate Polyacrylamide Gel Electrophoresis (SDS-PAGE).<strong> </strong>Hasil penelitian menunjukkan bahwa dari 6 sampel baso terindikasi ada 2 sampel baso dengan nomor 1 dan 5 yang dibuat dari campuran daging sapi dan tikus; ada 1 sampel baso dengan nomor 6 yang terbuat dari daging tikus; dan 2 sampel baso dengan nomor 2 dan 3 yang terbuat dari campuran sapi  dan babi, dan hanya 1 sampel baso dengan nomor sampel 4 yang benar-benar terbuat dari daging sapi.</em>


2020 ◽  
Vol 20 (8) ◽  
pp. 970-981
Author(s):  
Hamed A. Ghramh ◽  
Essam H. Ibrahim ◽  
Mona Kilnay

Background: Juniperus procera and Majra honey are well-known as a folk medicine in many countries. Objectives: This work aimed to study the immunomodulatory effects after mixing Majra honey, J. procera water leaves extract and silver Nanoparticles (AgNPs) on immune or cancer cells. Methods: Juniperus procera water leaves extract and 20% Majra honey were prepared. Both the extract and honey were used separately to synthesize AgNPs. AgNPs were characterized using UV/Vis spectrophotometry and electron microscopy. Bioactive molecules in honey and the extract were explored using Fourier Transform Infrared (FT-IR) spectroscopy. Protein profile of honey was explored using Sodium Dodecyl Sulfate- Polyacrylamide Gel Electrophoresis (SDS-PAGE) and honey sugar content was determined using High- Performance Liquid Chromatography (HPLC). Biological activities of honey and the extract were tested. Results: The results demonstrated the ability of the extract/honey to produce AgNPs in a spherical shape. The extract/honey contained many functional groups. SDS-PAGE of Majra honey showed many protein bands. HPLC revealed honey is of good quality and no external additives are added to it. The extract and extract+ AgNPs inhibited the growth of normal rat splenic cells while honey stimulated it. The extract+honey turned stimulatory to the splenic cells’ growth and significantly diminished the inhibitory potential of the extract containing AgNPs. Both the extract and honey have antimicrobial activities, this potential increased in the presence of AgNPs. Honey and Honey+AgNPs inhibited HepG2 cancer cell proliferation while Hela cell growth inhibited only with honey+AgNPs. Conclusion: Both honey and the extract have antibacterial and immunomodulatory potentials as well as the power to produce AgNPs. Majra honey alone showed anticancer activity against HepGe2 cells, but not against Hela cells, and when contained AgNPs had anticancer activity on both cell lines. Mixing of Majra honey with J. procera extract showed characterized immunomodulatory potentials that can be described as immunostimulant.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Tomomi Nakamura ◽  
Motozo Yamashita ◽  
Kuniko Ikegami ◽  
Mio Suzuki ◽  
Manabu Yanagita ◽  
...  

AbstractAutophagy is a lysosomal protein degradation system in which the cell self-digests its intracellular protein components and organelles. Defects in autophagy contribute to the pathogenesis of age-related chronic diseases, such as myocardial infarction and rheumatoid arthritis, through defects in the extracellular matrix (ECM). However, little is known about autophagy in periodontal diseases characterised by the breakdown of periodontal tissue. Tooth-supportive periodontal ligament (PDL) tissue contains PDL cells that produce various ECM proteins such as collagen to maintain homeostasis in periodontal tissue. In this study, we aimed to clarify the physiological role of autophagy in periodontal tissue. We found that autophagy regulated type I collagen synthesis by elimination of misfolded proteins in human PDL (HPDL) cells. Inhibition of autophagy by E-64d and pepstatin A (PSA) or siATG5 treatment suppressed collagen production in HPDL cells at mRNA and protein levels. Immunoelectron microscopy revealed collagen fragments in autolysosomes. Accumulation of misfolded collagen in HPDL cells was confirmed by sodium dodecyl sulfate–polyacrylamide gel electrophoresis. E-64d and PSA treatment suppressed and rapamycin treatment accelerated the hard tissue-forming ability of HPDL cells. Our findings suggest that autophagy is a crucial regulatory process that facilitates type I collagen synthesis and partly regulates osteoblastic differentiation of PDL cells.


Sign in / Sign up

Export Citation Format

Share Document