scholarly journals Vpliv sezone na in vitro razgradljivost in fermentabilnost krmil v vampovem soku navadnega jelena (Cervus elaphus L.)

2021 ◽  
Vol 117 (4) ◽  
pp. 1
Author(s):  
Andrej LAVRENČIČ ◽  
Darko VETERNIK

Transition from summer to winter changes red deer digestive tract physiology and digestive processes. The objective of the trial was to determine the effects of season on in vitro apparent (<em>iv</em>ADMD) and true dry matter (<em>iv</em>TDMD) digestibility, in vitro gas production parameters and short-chain fatty acid synthesis (SCFA) in red deer hinds of eleven substrates naturally occurring in Slovenia (chestnut fruits, acorns of common and sessile oak, two fresh grasses) and those frequently used in supplemental red deer feeding (two grass hays and two grass silages, apple pomace and sugar beet roots). There were no differences in <em>iv</em>ADMD, <em>iv</em>TDMD, determined by incubation of feeds in buffered rumen fluid, as there were no differences in majority of gas production parameters between autumn and winter season. Only the parameter “C” (specific gas production rate) was frequently higher (<em>p</em> &lt; 0.05) in winter season than in autumn season. The amounts of SCFA were similar between two seasons. However, the proportion of acetic acid tended to be higher in winter, while the proportions of propionic and butyric acid tended to be higher in autumn than in winter especially in high fibre feeds. On contrary, in high starch feeds such as oak acorns and chestnut fruits, the proportion of propionic acid was higher (<em>p</em> &lt; 0.05) in winter, while of butyric acid in autumn (<em>p</em> &lt; 0.05). Despite the fact that the number of used substrates (n = 11) and animal rumen fluid donors (n = 6) were small, these results indicate a shift in rumen microbial metabolism between autumn and winter season.

Author(s):  
Yasemin Işık ◽  
Adem Kaya

In this study, in vitro gas production values, gas production parameters (a, b, a+b and c) and organic matter digestibilities (OMD), metabolizable energy (ME), net energy lactation (NEL) contents, chemical compositions and feed values of different physical processed (raw, soaked, boiled and roasted) common vetch seeds (Vicia sativa) were determined by in vitro gas production technique. Rumen fluid, used in this study, was obtained by probe from one Holstein bull (seven years old, average live weight= 650 kg) raised at Research and Application Farm of Agricultural Faculty Atatürk University. Raw and treated common vetch seeds were incubated for 2, 4, 6, 8, 12, 24, 48, 72 ve 96 hours for the determination of in vitro gas production values and gas production parameters in rumen fluid. It was observed significant differences among all of the common vetch seeds in terms of chemical composition (DM, CA, OM, CP, EE, NDF, ADF, ADL) values (P


2021 ◽  
Vol 8 (1) ◽  
pp. 10
Author(s):  
Rittikeard Prachumchai ◽  
Anusorn Cherdthong ◽  
Metha Wanapat

Two experiments were undertaken to screen for ruminal cyanide-utilizing bacteria (Experiment 1), and to evaluate the influence of fresh cassava root (FCR) and pellets containing high sulfur (PELFUR) on cyanide content, gas production parameters, in vitro degradability, and ruminal fermentation (Experiment 2). Experiment 1 was conducted in a completely randomized design (CRD) for the screening of cyanide-utilizing bacteria and the dietary treatments consisted of cyanide at 0, 150, 300, and 450 ppm. In Experiment 2, a 5 × 3 factorial arrangement in a completely randomized design was used for the in vitro study. Factor A was the level of FCR at 0, 260, 350, 440, and 530 g/kg of dry matter (DM) substrate, and factor B was the level of PELFUR at 0, 15, and 30 g/kg DM substrate. In Experiment 1, adding different doses of cyanide significantly affected cyanide-utilizing rumen bacterial growth (p < 0.05). Increasing the concentration of cyanide from 0 to 150 and 150 to 300 ppm resulted in increases in cyanide-utilizing rumen bacteria of 38.2% and 15.0%, respectively. In Experiment 2, no interaction effects were found between FCR and PELFUR doses on gas production parameters (p > 0.05). Increasing the FCR level to more than 260 g/kg of DM substrate could increase cumulative gas production (p < 0.05). Increasing doses of PELFUR from 15 to 30 g/kg increased the cumulative gas production when compared with that of 0 g PELFUR/kg of DM substrate (p < 0.05). The cyanide concentration in rumen fluid decreased with PELFUR (p < 0.05) supplementation. Degradability of in vitro DM and organic matter following incubation increased at 12 and 24 h due to PELFUR supplementation with FCR and increased additionally with 15 g PELFUR/kg of DM substrate (p < 0.05) in 440 g FCR/kg of DM substrate. Proportions of the total volatile fatty acids, acetic acid (C2), propionic acid (C3), and butyric acid among supplementations with FCR (p < 0.05) were significantly different. In conclusion, the present results represent the first finding of bacteria in the rumen that are capable of utilizing cyanide, and suggests that cyanide might function as a nitrogen source for bacterial cell synthesis. The inclusion of FCR of 530 g/kg with 30 g PELFUR/kg of DM substrate could increase the cumulative gas production, the bacterial population, the in vitro degradability, the proportion of C3, and the rate of the disappearance of cyanide.


Animals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 307
Author(s):  
Yuhui Zheng ◽  
Yanyan Zhao ◽  
Shenglin Xue ◽  
Wei Wang ◽  
Yajing Wang ◽  
...  

The feeding value of replacing concentrate with cassava (Manihot esculenta) residue in the feed of Holstein cows was confirmed using an in vitro gas test. The treatments consisted of 0% (control, CON), 5%, 10%, 15%, 20%, 25%, and 30% inclusion of cassava residue in fermentation culture medium composed of buffer solution (50 mL) and filtrated rumen fluid (25 mL). The parameters analyzed included the kinetics of gas production and fermentation indexes. Forty-eight hours later, there were no significant differences on in vitro dry matter disappearance (IVDMD), pH, and microbial crude protein (MCP) content among treatments (p > 0.05). However, the “cumulative gas production at 48 h” (GP48), the “asymptotic gas production” (A), and the “maximum gas production rate” (RmaxG) all increased linearly or quadratically (p < 0.01). The GP48 was significantly higher in the 25% treatment compared to the other treatments, except for the 30% (p < 0.01). The A was significantly larger in the 25% treatment compared to the other treatments, except for the 20% and 30% (p < 0.01). The RmaxG was distinctly larger in the 25% treatment compared to other treatments (p < 0.01); moreover, the “time at which RmaxG is reached” (TRmaxG) and the “time at which the maximum rate of substrate degradation is reached” (TRmaxS) were significantly higher in the 25% treatment than the CON, 20%, and 30% treatments (p < 0.01). Additionally, the content of ammonia-N (NH3-N) in all treatments showed linearly and quadratically decreases (p < 0.01), whereas total volatile fatty acid (VFA), iso-butyrate, butyrate, and iso-valerate contents changed quadratically (p = 0.02, p = 0.05, p = 0.01, and p = 0.02, respectively); all of these values peaked in the 25% treatment. In summary, the 25% treatment was associated with more in vitro gas and VFA production, indicating that this cassava residue inclusion level may be used to replace concentrate in the feed of Holstein cows. However, these results need to be verified in vivo.


2005 ◽  
Vol 123-124 ◽  
pp. 107-118 ◽  
Author(s):  
Gonzalo Hervás ◽  
Pilar Frutos ◽  
F. Javier Giráldez ◽  
Manuel J. Mora ◽  
Begoña Fernández ◽  
...  

2021 ◽  
Vol 99 (Supplement_3) ◽  
pp. 466-466
Author(s):  
Angela R Boyer ◽  
Yun Jiang ◽  
Alon Blakeney ◽  
Dennis Nuzback ◽  
Brooke Humphrey ◽  
...  

Abstract Vistore® minerals are hydroxychloride minerals that feature high metal content and improved bioavailability. This study was conducted to compare different sources of zinc (Zn) on in vitro rumen fermentation parameters. Three ruminally-cannulated Jersey heifers were adapted to a lactation diet for two weeks before used as donors. Three sources of Zn were tested at 20 ppm: No supplemental Zn (CON), ZnSO4, Vistore Zn, and another Zn hydroxychloride (Vistore-competitor). The concentration of Zn in this study was selected from a titration study (0 to 40 ppm ZnSO4) to identify the minimum concentration of ZnSo4 affecting rumen fermentation. The lactation diet (TMR) was dried and ground to 1mm and used as substrate. Rumen fluid was collected two hours after feeding. Substrate (0.5 g) was inoculated with 100 mL of 3:1 McDougall’s buffer: ruminal flued mixture at 39ºC for 24 h. Each treatment was run in triplicate and in three runs. Data were analyzed with R 3.0. The model included fixed effect of treatment and random effect of run. ZnSO4 reduced (P &lt; 0.05) maximum gas production, DMD (54 vs. 55.9%) and cellulose (27.5 and 40.7%) digestibility. acetate to propionate ration (2.20 vs. 2.24) and NH3-N concentration (6.0 vs. 7.0 mg/dL), increased (P &lt; 0.05) propionate % (27.2 vs 26.7%) compared to control. Vistore had higher pH than control (6.44 vs. 6.40, P = 0.02) but did not affect other parameters compared to CON. Vistore-competitor reduced total VFA production compared to control, ZnSO4, and Vistore (94 vs. 102, 106 and 107 mM, respectively, P = 0.01) but did not affect other parameters. In general, Vistore Zn maintained in vitro ruminal fermentation and digestibility, while ZnSO4 had negative effects on both fermentation and digestibility and Vistore-competitor reduced total VFAs. Results indicate hydroxychloride minerals may stabilize rumen parameters versus sulfate sources but different hydroxychloride sources appear to influence rumen parameters differently.


2011 ◽  
Vol 11 (2) ◽  
pp. 29-34 ◽  
Author(s):  
Novita Hindratiningrum ◽  
Muhamad Bata ◽  
Setya Agus Santosa

Products of rumen fermentation and protein microbial of dairy cattle feed with rice bran ammonization and some feedstuffs as an energy sourcesABSTRACT. This study aims to examine the energy sources of feed ingredients that can increase the production of Volatile Fatty Acids (VFA), N-NH3, microbial protein synthesis, total gas production and metabolic energy. The material used is as a source of rumen fluid inoculum from Frisian Holstein cows (FH) females, amoniasi rice straw, salt, mineral mix brand "Ultra Minerals' production Eka Farma Semarang, onggok wet and dry, corn, and rice bran. Observed variable is the concentration of (VFA), N-NH3, rumen microbial protein synthesis, and total gas production. Based on the analysis of diversity seen any significant effect (P0.05) on total VFA concentration, N-NH3 and total gas but had no effect (P0.05) on microbial protein synthesis. Conclusion of research is the provision of energy sources with rice bran treatment, onggok wet and dry corn flour can be used as fermentable carbohydrates on feed hay amoniasi in vitro.


1995 ◽  
Vol 43 (1) ◽  
pp. 301 ◽  
Author(s):  
J.W. Pollard ◽  
M.J. Bringans ◽  
B. Buckrell

2019 ◽  
Vol 97 (Supplement_3) ◽  
pp. 427-428
Author(s):  
Richard R Lobo ◽  
Marcos I Marcondes ◽  
Paulo H Rodrigues ◽  
Antonio Faciola ◽  
Rafael Pinheiro ◽  
...  

Abstract The objective was to identify the non-linear model with the best fit for cumulative gas production from fermentation of fresh alfalfa, with or without tannin extract, incubated with rumen fluid from five different species of ruminants. Fifteen animals (Taurine and Zebuine cattle, water buffaloes, sheep and goats) were used as inoculum donors. During incubation, 500 mg of fresh alfalfa, with or without 150 mg of acacia tannin extract, were used as substrate in the semi-automated gas production technique. Experimental design was completely randomized in a factorial arrangement with five inoculum sources (ruminant specie) and two treatments (with or without tannin extract). We used the PROC NLMIXED to fit ten mathematical models and the best one was chosen based on the lowest AIC and MSE and highest R2. Lastly, the best model was validated using the cross validation technique. The model with the best fit was the Groot model (AIC 1255.5; MSE 174.01; R2 0.9496) comparatively to others methods and the most part of error is from random effect (97.7%). Tannin inclusion reduced parameters potential gas production (A) and time to produce half of total gas production (T1) (P &gt; 0.0001); however, no difference was observed on the gas production rate (k) (P &gt; 0.1181). When no tannin was added, differences between the two cattle category were observed. Comparing water buffaloes’ inoculum with Taurine inoculum, no differences were observed for “A,” however, this parameter differed among water buffaloes and Zebuine cattle. In conclusion, Groot model had the best fit on in vitro bioassay with alfalfa substrate and treated or not with tannin extract. The tannin extract reduced the potential gas production; however, it did not change the gas production rate. For evaluation of alfalfa by cumulative gas production technique, the potential gas production was changed by using different animal categories as inoculum donor.


2002 ◽  
Vol 2002 ◽  
pp. 166-166 ◽  
Author(s):  
M. Afdal ◽  
F.L. Mould ◽  
C. Rymer ◽  
E. Owen ◽  
D.I. Givens

Considerable efforts have been made regarding the use of faecal material to provide a microbial inoculum for in vitro feed evaluation systems. However total gas production, rate of gas release and the extent of degradation of feeds incubated using faecal inoculum are lower than those incubated in a rumen fluid medium. It has been suggested that this is due to lower microbial activity, a consequence of the different microflora and reduced microbial numbers (e.g. Mauricio, 1999). Microbial populations are dynamic so, as their enzyme activity profiles change rapidly, little information is obtained from examining these. However, their hydrolytic activity as reflected by their ability to degrade specific substrates can be simply measured and provides a potential method with which to assess the quality of inocula with respect to their use in in vitro systems. The data presented here are from a larger study in which the differences between the hydrolytic activity of faecal material and rumen contents as influenced by the time of sampling were assessed in vitro.


Sign in / Sign up

Export Citation Format

Share Document