scholarly journals A combination method for multi-criteria decision making problem in turning process

2021 ◽  
Vol 8 ◽  
pp. 26
Author(s):  
Do Duc Trung

This paper presents a multi-criteria decision making (MCDM) for a turning process. An experimental process was performed according to the sequence of a matrix using the Taguchi method with nine experiments. The parameters including workpiece speed, feed rate, depth of cut, and nose radius were selected as the input variables. At each experiment, three cutting force components that were measured in the three directions X, Y, and Z, were Fx, Fy, and Fz, respectively. The value of Material Removal Rate (MRR) was also calculated at each experiment. The main purpose of this study is determination of an experiment in total performed experiments simultaneously ensuring the minimum Fx, Fy, and Fz and the maximum MRR. The Entropy method was applied to determine the weights for parameters Fx, Fx, Fx, and MRR. Eight MCDM methods were applied for multi-criteria decision making, this has not been performed in any studies. The implementation steps of each method were also presented in this paper. Seven ones of these eight methods determined the best experiment in total nine performed experiments. A new multi-criteria decision-making method as well as orientation for the further works were also proposed in this study.

2021 ◽  
Vol 16 (4) ◽  
pp. 443-456
Author(s):  
D.D. Trung ◽  
H.X. Thinh

Multi-criteria decision-making is important and it affects the efficiency of a mechanical processing process as well as an operation in general. It is understood as determining the best alternative among many alternatives. In this study, the results of a multi-criteria decision-making study are presented. In which, sixteen experiments on turning process were carried out. The input parameters of the experiments are the cutting speed, the feed speed, and the depth of cut. After conducting the experiments, the surface roughness and the material removal rate (MRR) were determined. To determine which experiment guarantees the minimum surface roughness and maximum MRR simultaneously, four multi-criteria decision-making methods including the MAIRCA, the EAMR, the MARCOS, and the TOPSIS were used. Two methods the Entropy and the MEREC were used to determine the weights for the criteria. The combination of four multi-criteria making decision methods with two determination methods of the weights has created eight ranking solutions for the experiments, which is the novelty of this study. An amazing result was obtained that all eight solutions all determined the same best experiment. From the obtained results, a recommendation was proposed that the multi-criteria making decision methods and the weighting methods using in this study can also be used for multi-criteria making decision in other cases, other processes.


2021 ◽  
Vol 15 ◽  
pp. 127-135
Author(s):  
Nguyen Lam Khanh ◽  
Nguyen Van Cuong

Milling is a commonly used method in mechanical machining. This is considered to be the method for the highest productivity among cutting methods. Moreover, the quality of the machined surface is increasingly improved as well as the machining productivity is increasingly enhanced thanks to the development of machine tool and cutting tool manufacturing technology. Therefore, in each specific processing condition (about machine, tool and part material, and other conditions), specific studies are required to determine the value of technological parameters in order to improve productivity and machining accuracy. Only in this way can we take full advantage of the capabilities of modern equipment. The process parameters in the milling method in particular and in the machining and cutting methods in general can be easily adjusted by the machine operator as the parameters of the cutting parameters or the change of tool types. In this article, the combination of Taguchi and Proximity Indexed Value (PIV) methods is presented for multi-criteria decision making in milling. An experimental matrix was designed according to Taguchi method with five input parameters, including the insert materials (TiN, TiCN, and TiAlN), nose radius, cutting velocity, feed rate and depth of cut. The total number of experiments that were performed was twenty-seven. The workpiece used during the experiment was SCM440 steel. At each experiment, the surface roughness was measured and the Material Removal Rate (MRR) was calculated. The weights of these two parameters have been chosen by the decision maker on the basis of consultation with experts. The PIV method was applied to determine the experiment at which the minimum surface roughness and the maximum MRR were simultaneously guaranteed. In addition, the influence of input parameters on surface roughness was also found in this study.


2016 ◽  
Vol 40 (1) ◽  
pp. 101-111 ◽  
Author(s):  
B. Singaravel ◽  
T. Selvaraj ◽  
S. Vinodh

Selection of optimum machining parameters in machining operations leads to good functional attributes for the machined components and increased productivity. In this work, machining parameters and nose radius are optimized in turning of EN25 steel with coated carbide tool by the application of combined Multi-Objective Optimization by Ratio Analysis (MOORA) and entropy measurement method. The selected machining parameters are cutting speed, feed rate, depth of cut and nose radius for minimization of surface roughness, micro-hardness and maximization of Material Removal Rate (MRR). Entropy concept has been used to assign the weight criteria of each objective being considered. The optimum combination of machining parameters and nose radius are obtained using normalized assessment values. The results obtained in the analysis are validated and the results based on turning process responses can be effectively improved.


Author(s):  
Rajesh Kumar Bhushan

Optimization in turning means determination of the optimal set of the machining parameters to satisfy the objectives within the operational constraints. These objectives may be the minimum tool wear, the maximum metal removal rate (MRR), or any weighted combination of both. The main machining parameters which are considered as variables of the optimization are the cutting speed, feed rate, depth of cut, and nose radius. The optimum set of these four input parameters is determined for a particular job-tool combination of 7075Al alloy-15 wt. % SiC (20–40 μm) composite and tungsten carbide tool during a single-pass turning which minimizes the tool wear and maximizes the metal removal rate. The regression models, developed for the minimum tool wear and the maximum MRR were used for finding the multiresponse optimization solutions. To obtain a trade-off between the tool wear and MRR the, a method for simultaneous optimization of the multiple responses based on an overall desirability function was used. The research deals with the optimization of multiple surface roughness parameters along with MRR in search of an optimal parametric combination (favorable process environment) capable of producing desired surface quality of the turned product in a relatively lesser time (enhancement in productivity). The multi-objective optimization resulted in a cutting speed of 210 m/min, a feed of 0.16 mm/rev, a depth of cut of 0.42 mm, and a nose radius of 0.40 mm. These machining conditions are expected to respond with the minimum tool wear and maximum the MRR, which correspond to a satisfactory overall desirability.


Author(s):  
Sandro Turchetta ◽  
Luca Sorrentino ◽  
Gianluca Parodo

Diamond tools suitable for machining operations of natural stones can be divided into two groups: cutting tools, including blades, the circular blades and the wires, and the surface machining ones, involving mills and grinders, that can be of different shapes. For the stone sawing process, the most adopted tool type is the diamond mill, whose duration and performance are influenced by various elements such as: the mineralogical characteristics of the material to be machined; the working conditions such as the depth of cut, the feed rate and the spindle speed; the production process of the diamond segment and the characteristics of both the matrix and the diamond, such as the size, the type and the concentration of the diamonds and the metal bond formulation hardness. This work allows to indirectly assess the wear of sintered diamond tools by signal analysis (in time and frequency domain) of the cutting force components acquired in the process. The results obtained represent a fundamental step for the development of a sensory supervision system capable of assessing the tool wear and hence to modify the process parameters in process, in order to optimize cutting performance and tool life.


Author(s):  
Günay Kılıç ◽  
Arzu Organ

The share of electronic commerce (e-commerce) in total trade is increasing. There are many kinds of services and products within the scope of e-commerce. These products and services are subdivided according to their sales forms and product groups. In this chapter, only the private shopping websites in the online sales group were examined. Private shopping sites are the sites where the members buy certain products with limited stock in limited time. In this chapter, six leading sites are defined as alternatives for the purpose of comparison. When the studies in the literature are examined, it is seen that multi-criteria decision making methods are used in order to sort the special shopping sites by taking into consideration the criteria. Entropy method was used to determine the weights of the criteria under each main topic determined in the study. Moosra method was chosen from multi-criteria decision making methods in order to rank alternative websites. As a result, alternative sites were listed separately and then examined as to whether there was a relationship between these groups.


Materials ◽  
2020 ◽  
Vol 13 (13) ◽  
pp. 2998 ◽  
Author(s):  
Kubilay Aslantas ◽  
Mohd Danish ◽  
Ahmet Hasçelik ◽  
Mozammel Mia ◽  
Munish Gupta ◽  
...  

Micro-turning is a micro-mechanical cutting method used to produce small diameter cylindrical parts. Since the diameter of the part is usually small, it may be a little difficult to improve the surface quality by a second operation, such as grinding. Therefore, it is important to obtain the good surface finish in micro turning process using the ideal cutting parameters. Here, the multi-objective optimization of micro-turning process parameters such as cutting speed, feed rate and depth of cut were performed by response surface method (RSM). Two important machining indices, such as surface roughness and material removal rate, were simultaneously optimized in the micro-turning of a Ti6Al4V alloy. Further, the scanning electron microscope (SEM) analysis was done on the cutting tools. The overall results depict that the feed rate is the prominent factor that significantly affects the responses in micro-turning operation. Moreover, the SEM results confirmed that abrasion and crater wear mechanism were observed during the micro-turning of a Ti6Al4V alloy.


2002 ◽  
Vol 124 (2) ◽  
pp. 473-475 ◽  
Author(s):  
Michael P. Vogler ◽  
Richard E. DeVor ◽  
Shiv G. Kapoor

An analytical method for stability prediction incorporating the nonlinear influence of the effective lead angle in turning is proposed and validated. It is shown that as the effective lead angle changes, due to depth of cut variations on a nose radiused cutting insert, different structural modes are excited, resulting in different stability results. Experiments have been performed on a two degree-of-freedom system representative of the turning of long, slender bars. It is shown that chatter may be present at low depths of cut, typically less than the nose radius of the insert. The proposed model is also capable of predicting the chatter present at larger depths of cut that is typically reported in literature.


2021 ◽  
Vol 309 ◽  
pp. 01010
Author(s):  
Do Duc Trung ◽  
Nguyen Huu Quang ◽  
Tran Quoc Hoang ◽  
Cao The Anh ◽  
Nguyen Hong Linh ◽  
...  

In this article, a multi-objective optimization of turning process study is presented. Two output parameters of the turning process taken into consideration are surface roughness and Material Removal Rate (MRR). Taguchi method has been applied to design the experimental matrix with four input parameters including nose radius, cutting velocity, feed rate and cutting depth. Copras method has been employed to solve the multi-objective optimization problem. Finally, the optimal values of the input parameters have been determined to simultaneously ensure the two criteria of the minimum surface roughness and the maximum MRR.


Sign in / Sign up

Export Citation Format

Share Document