scholarly journals The Combination of Taguchi and Proximity Indexed Value Methods for Multi-criteria Decision Making When Milling

2021 ◽  
Vol 15 ◽  
pp. 127-135
Author(s):  
Nguyen Lam Khanh ◽  
Nguyen Van Cuong

Milling is a commonly used method in mechanical machining. This is considered to be the method for the highest productivity among cutting methods. Moreover, the quality of the machined surface is increasingly improved as well as the machining productivity is increasingly enhanced thanks to the development of machine tool and cutting tool manufacturing technology. Therefore, in each specific processing condition (about machine, tool and part material, and other conditions), specific studies are required to determine the value of technological parameters in order to improve productivity and machining accuracy. Only in this way can we take full advantage of the capabilities of modern equipment. The process parameters in the milling method in particular and in the machining and cutting methods in general can be easily adjusted by the machine operator as the parameters of the cutting parameters or the change of tool types. In this article, the combination of Taguchi and Proximity Indexed Value (PIV) methods is presented for multi-criteria decision making in milling. An experimental matrix was designed according to Taguchi method with five input parameters, including the insert materials (TiN, TiCN, and TiAlN), nose radius, cutting velocity, feed rate and depth of cut. The total number of experiments that were performed was twenty-seven. The workpiece used during the experiment was SCM440 steel. At each experiment, the surface roughness was measured and the Material Removal Rate (MRR) was calculated. The weights of these two parameters have been chosen by the decision maker on the basis of consultation with experts. The PIV method was applied to determine the experiment at which the minimum surface roughness and the maximum MRR were simultaneously guaranteed. In addition, the influence of input parameters on surface roughness was also found in this study.

2021 ◽  
Vol 16 (4) ◽  
pp. 443-456
Author(s):  
D.D. Trung ◽  
H.X. Thinh

Multi-criteria decision-making is important and it affects the efficiency of a mechanical processing process as well as an operation in general. It is understood as determining the best alternative among many alternatives. In this study, the results of a multi-criteria decision-making study are presented. In which, sixteen experiments on turning process were carried out. The input parameters of the experiments are the cutting speed, the feed speed, and the depth of cut. After conducting the experiments, the surface roughness and the material removal rate (MRR) were determined. To determine which experiment guarantees the minimum surface roughness and maximum MRR simultaneously, four multi-criteria decision-making methods including the MAIRCA, the EAMR, the MARCOS, and the TOPSIS were used. Two methods the Entropy and the MEREC were used to determine the weights for the criteria. The combination of four multi-criteria making decision methods with two determination methods of the weights has created eight ranking solutions for the experiments, which is the novelty of this study. An amazing result was obtained that all eight solutions all determined the same best experiment. From the obtained results, a recommendation was proposed that the multi-criteria making decision methods and the weighting methods using in this study can also be used for multi-criteria making decision in other cases, other processes.


2021 ◽  
Vol 71 (2) ◽  
pp. 69-84
Author(s):  
Do Duc Trung

Abstract Low surface roughness and high Material Removal Rate (MRR) are expected in most machining methods in general and milling method in particular. However, they sometimes do not occur, for example, the MRR is often small as the surface roughness is low. In this case, the decisions made should ensure that desires are simultaneously satisfied. This situation leads to a problem known as multi-criteria decision making (MCDM). In this study, five methods including EDAS, MARCOS, PIV, MOORA and TOPSIS are used together for the decision-making in the milling process. The purpose of the research is to determine the value of cutting parameters for both the low surface roughness and large MRR. The comparison of these methods for finding the best is carefully discussed as well.


Author(s):  
S. Dinesh ◽  
K. Rajaguru ◽  
K. Saravanan ◽  
R. Yokeswaran ◽  
V. Vijayan

Automotive shafts require maximum strength with regard to axial, bending and torsional loading to transmit power to various parts of a vehicle. Hence, it is very critical to analyse the manufacturing process and its governing parameters to exercise control over the surface properties of the shaft as it needs to be precisely manufactured in terms of dimensions and the surface roughness. The effect of three input parameters over two responses are considered as two major criteria's for production of shaft. The input parameters are speed, feed and depth of cut whereas the responses are material removal rate and surface roughness. Central Composite design was used and experimental results were analysed with Response Surface Methodology. ANOVA analysis was carried out to identify the most contributing parameter for MRR and SR. Grey Relational Analysis was adopted to identify the most feasible combination of machining parameters for turning process. The optimized parameter is identified as speed of 1000 rpm, 0.15 mm of feed and 0.35 mm of depth of cut using Grey Relational Analysis.


Optimization is required everywhere particularly in the industrial sector. As a part of that machining emphasized in this paper to optimize the parameters involved in the turning and drilling operation on CNC machines using the Aluminum and Stainless steel alloys. The task is initiated with design of experiments and hence the cost of operation is also reduced. During the experimental process the input parameters involved for turning were considered as cutting speed, feed and depth of cut. And for the drilling operation the input process parameters considered were speed of drill, feed. The output parameters emphasized were surface roughness and dimensional accuracy. By the investigation using the experiments, it in turn leads to an optimized environment for the operation that was carried out. Taguchi technique is a widely used and efficient technique for correlating the process parameters for an efficient and effective operation. Then the process L9 and L16 orthogonal arrays were chosen and signal to noise ratios were computed. At the end the input parameters speed, feed, depth of cut, depth of drill and outcome parameters surface roughness, material removal rate and time of operation were optimized.


2021 ◽  
Vol 8 ◽  
pp. 26
Author(s):  
Do Duc Trung

This paper presents a multi-criteria decision making (MCDM) for a turning process. An experimental process was performed according to the sequence of a matrix using the Taguchi method with nine experiments. The parameters including workpiece speed, feed rate, depth of cut, and nose radius were selected as the input variables. At each experiment, three cutting force components that were measured in the three directions X, Y, and Z, were Fx, Fy, and Fz, respectively. The value of Material Removal Rate (MRR) was also calculated at each experiment. The main purpose of this study is determination of an experiment in total performed experiments simultaneously ensuring the minimum Fx, Fy, and Fz and the maximum MRR. The Entropy method was applied to determine the weights for parameters Fx, Fx, Fx, and MRR. Eight MCDM methods were applied for multi-criteria decision making, this has not been performed in any studies. The implementation steps of each method were also presented in this paper. Seven ones of these eight methods determined the best experiment in total nine performed experiments. A new multi-criteria decision-making method as well as orientation for the further works were also proposed in this study.


Author(s):  
Amritpal Singh ◽  
Rakesh Kumar

In the present study, Experimental investigation of the effects of various cutting parameters on the response parameters in the hard turning of EN36 steel under the dry cutting condition is done. The input control parameters selected for the present work was the cutting speed, feed and depth of cut. The objective of the present work is to minimize the surface roughness to obtain better surface finish and maximization of material removal rate for better productivity. The design of experiments was done with the help of Taguchi L9 orthogonal array. Analysis of variance (ANOVA) was used to find out the significance of the input parameters on the response parameters. Percentage contribution for each control parameter was calculated using ANOVA with 95 % confidence value. From results, it was observed that feed is the most significant factor for surface roughness and the depth of cut is the most significant control parameter for Material removal rate.


2015 ◽  
Vol 1115 ◽  
pp. 12-15
Author(s):  
Nur Atiqah ◽  
Mohammad Yeakub Ali ◽  
Abdul Rahman Mohamed ◽  
Md. Sazzad Hossein Chowdhury

Micro end milling is one of the most important micromachining process and widely used for producing miniaturized components with high accuracy and surface finish. This paper present the influence of three micro end milling process parameters; spindle speed, feed rate, and depth of cut on surface roughness (Ra) and material removal rate (MRR). The machining was performed using multi-process micro machine tools (DT-110 Mikrotools Inc., Singapore) with poly methyl methacrylate (PMMA) as the workpiece and tungsten carbide as its tool. To develop the mathematical model for the responses in high speed micro end milling machining, Taguchi design has been used to design the experiment by using the orthogonal array of three levels L18 (21×37). The developed models were used for multiple response optimizations by desirability function approach to obtain minimum Ra and maximum MRR. The optimized values of Ra and MRR were 128.24 nm, and 0.0463 mg/min, respectively obtained at spindle speed of 30000 rpm, feed rate of 2.65 mm/min, and depth of cut of 40 μm. The analysis of variance revealed that spindle speeds are the most influential parameters on Ra. The optimization of MRR is mostly influence by feed rate. Keywords:Micromilling,surfaceroughness,MRR,PMMA


2021 ◽  
Vol 5 (10) ◽  
pp. 261
Author(s):  
Hassan K. Langat ◽  
Fredrick M. Mwema ◽  
James N. Keraita ◽  
Esther T. Akinlabi ◽  
Job M. Wambua ◽  
...  

This study involves the optimization of the milling parameters of unmodified Calotropis Procera fiber-reinforced PLA composite (UCPFRPC). The material is prepared from the combination of 20% Calotropis-Procera and 80% of PLA by weight. The experiments are designed using the Taguchi methodology, where 16 experiments are obtained using the spindle rotational speed, depth of cut, and feed rate as the parameters. These experiments were conducted while obtaining thermal images using an infrared camera and recording the machining time. The change in mass was then determined and the material removal rate computed. The machined workpieces were then investigated for surface roughness. The study shows that the optimal milling parameters in the machining of UCPFRPC for the lowest surface roughness are 400 rpm, 400 mm/min, and 0.2 mm, for the rotational spindle speed, feed rate, and depth of cut. The parameters were 400 rpm, 100 mm/min, and 1.2 mm for the largest MRR, and 400 rpm, 400 mm/min, and 0.2 mm for the least average milling temperature. In all the responses, the depth of cut is the most significant factor.


2018 ◽  
Vol 877 ◽  
pp. 110-117 ◽  
Author(s):  
Poornesh Kumar Chaturvedi ◽  
Harendra Kumar Narang ◽  
Atul Kumar Sahu

Quality of the product is the major concern in manufacturing industries from customers as well as producers point of view. There are number of factors in the product such as surface condition, height, weight, length, width etc., which may be consider for the measurement of the quality. Surface roughness and Metal Removal Rate (MRR) are the two main outcomes on which numerous researchers have applied different approaches for several years to get optimum results. In this study, Taguchi Method is applied for getting optimum parameters settings for Surface roughness and Metal Removal Rate (MRR) in case of turning AlMg3 (AA5754) in CNC Lathe machine, which is an aluminum alloy having diameter 20 mm and length 100 mm. The three parameters i.e. spindle speed, feed rate and depth of cut with 3 levels are taken as the process variables and the working ranges of these parameters for conducting experiments are selected based on Taguchi’s L9 Orthogonal Array (OA) design. To analyze the significant process parameters; main effect plots for data means and for S/N ratio are generated using Minitab statistical software.


Sign in / Sign up

Export Citation Format

Share Document