scholarly journals Krenologia obszarów młodoglacjalnych na przykładzie Pojezierza Lubuskiego – przegląd badań

Author(s):  
ANNA SZCZUCIŃSKA ◽  
MAREK MARCINIAK ◽  
JACEK PŁOCIENNICZAK

The Polish Lowland is an area with rare and relatively poorly studied springs. The present paper review results of recent studies on springs, their hydrology and environments on Lubuskie Lakeland (5.200 km2) in western part of the Polish Lowland. This area contains over 1,000 springs and seepages outflowing from porous sediments. Most of them are related to thick Pleistocene sediments containing several groundwater bearing layers, which are cut by deep subglacial channels (tunnel valleys). The spring density index is the highest in catchment of the Gryżynka River, with up to 4.8 individual springs and seepages per 1 km2. The most common in the Lubuskie Lakeland are seepages (65%), descending and hillslope outflows. Their water discharge varies from < 0.001 to 50 000 dm3/s. Hydrochemistry of spring waters is dominated by calcium and bicarbonate ions, as well as high concentrations of iron and manganese. Due to the lack of a surface insulation layer, contaminants (various forms of nitrogen) easily migrate to groundwater. Generally, the spring waters have good quality. Moreover continuous observations of the water surface levels in spring supplied water bodies revealed daily fluctuations, which are likely due to evapotranspiration and changes of the filtration coefficient in hyporheic zone.

1998 ◽  
Vol 37 (6-7) ◽  
pp. 87-93 ◽  
Author(s):  
M. Kussmaul ◽  
A. Groengroeft ◽  
H. Koethe

In the year 1993 a confined and unused harbour basin was used to store 290,000 m3 of fine-grained dredged material from Hamburg harbour. About 70% of the deposit surface was water covered. The edge areas were above the water table and covered with reed. Emissions of dissolved compounds into the groundwater, as well as surface gas emissions were measured from 1994 to 1996. As indicators for water fluxes from the deposit we used NH4+ and HCO3− because of their high concentrations in mud porewater in comparison to groundwater. The average concentrations of NH4+ and HCO3− in the porewater increased during 2 years from 85 to 250 mg NH4+ 1−1 and from 2.0 to 3.1 g HCO3− 1−1, while the groundwater samples showed constant values of 8 mg NH4+ 1−1 and 0.7 g HCO3− 1−1. Furthermore, the average gas emissions over the water surface were 3.2 g CH4 m−2 d−1 and 0.8 g CO2 m−2 d−1. In contrast, no methane and 3.0 g CO2 m−2 d−1 were emitted from land areas. The results indicated, that there were no significant emissions of mud porewater compounds into the groundwater but high CH4-emissions over the water covered surface of the mud deposit.


Water ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 810 ◽  
Author(s):  
Agnieszka Pociecha ◽  
Agata Z. Wojtal ◽  
Ewa Szarek-Gwiazda ◽  
Anna Cieplok ◽  
Dariusz Ciszewski ◽  
...  

Mining is recognized to deeply influence invertebrate assemblages in aquatic systems, but different invertebrates respond in different ways to mining cessation. Here, we document the response of the cladoceran assemblage of the Chechło river, S. Poland (southern Poland) to the cessation of Pb-Zn ore mining. The aquatic system includes the river and associated subsidence ponds in the valley. Some ponds were contaminated during the period of mining, which ceased in 2009, while one of the ponds only appeared after mining had stopped. We used Cladocera to reveal how the cessation of mine water discharge reflected on the structure and density of organisms. A total of 20 Cladocera taxa were identified in the sediment of subsidence ponds. Their density ranged from 0 to 109 ind./1 cm3. The concentrations of Zn, Cd, Cu and Pb were much higher in sediments of the ponds formed during peak mining than in the ponds formed after the closure of the mine. Statistical analysis (CCA) showed that Alonella nana, Alona affinis, Alona sp. and Pleuroxus sp. strongly correlated with pond age and did not tolerate high concentrations of heavy metals (Cu and Cd). This analysis indicated that the rate of water exchange by the river flow and the presence of aquatic plants, affect species composition more than pond age itself.


2003 ◽  
Vol 69 (5) ◽  
pp. 2800-2809 ◽  
Author(s):  
Chad W. Saltikov ◽  
Ana Cifuentes ◽  
Kasthuri Venkateswaran ◽  
Dianne K. Newman

ABSTRACT Arsenate [As(V); HAsO4 2−] respiration by bacteria is poorly understood at the molecular level largely due to a paucity of genetically tractable organisms with this metabolic capability. We report here the isolation of a new As(V)-respiring strain (ANA-3) that is phylogenetically related to members of the genus Shewanella and that also provides a useful model system with which to explore the molecular basis of As(V) respiration. This gram-negative strain stoichiometrically couples the oxidation of lactate to acetate with the reduction of As(V) to arsenite [As(III); HAsO2]. The generation time and lactate molar growth yield (Ylactate) are 2.8 h and 10.0 g of cells mol of lactate−1, respectively, when it is grown anaerobically on lactate and As(V). ANA-3 uses a wide variety of terminal electron acceptors, including oxygen, soluble ferric iron, oxides of iron and manganese, nitrate, fumarate, the humic acid functional analog 2,6-anthraquinone disulfonate, and thiosulfate. ANA-3 also reduces As(V) to As(III) in the presence of oxygen and resists high concentrations of As(III) (up to 10 mM) when grown under either aerobic or anaerobic conditions. ANA-3 possesses an ars operon (arsDABC) that allows it to resist high levels of As(III); this operon also confers resistance to the As-sensitive strains Shewanella oneidensis MR-1 and Escherichia coli AW3110. When the gene encoding the As(III) efflux pump, arsB, is inactivated in ANA-3 by a polar mutation that also eliminates the expression of arsC, which encodes an As(V) reductase, the resulting As(III)-sensitive strain still respires As(V); however, the generation time and the Ylactate value are two- and threefold lower, respectively, than those of the wild type. These results suggest that ArsB and ArsC may be useful for As(V)-respiring bacteria in environments where As concentrations are high, but that neither is required for respiration.


2017 ◽  
Vol 43 (4) ◽  
pp. 1878 ◽  
Author(s):  
E. Zagana ◽  
I. Lemesios ◽  
S. Charalambopoulos ◽  
K. Katsanou ◽  
G. Stamatis ◽  
...  

A hydrogeological study took place in the broader area of Mesologgi – Aitoliko lagoons (West Greece) aiming at the investigation of a) the hydrogeological conditions of the area as well as the surface and groundwater influences on the quality of the clay deposits found in the lagoons and b) the properties of the clay in order to be identified as “therapeutic peloids”. Due to their location, the clay deposits could be influenced and possibly polluted from the surface waters. The aquifer of the unconsolidated formations presents low hydraulic conductivity, while the carbonate aquifer is bounded from the foregoing aquifer and therefore the possibility of clay pollution from the groundwater is very limited. pH of the sediments showing neutral and alkaline values, limits the mobility of some pollutants. Seawater affects some of the clay samples, which present high electrical conductivity. Iron and manganese show also high concentrations, while some of trace elements such as Cd, Hg, Hf, Be, Ag present concentrations under the detection limit. Most of the organic material of the clay consists of humus and therefore they could be suitable for fangotherapy.


2020 ◽  
Author(s):  
Guangqiu Jin ◽  
Yongfei Hao ◽  
Yihang Yang ◽  
Jie Wei ◽  
Xiaoxiao Shen ◽  
...  

2002 ◽  
Vol 2 (2) ◽  
pp. 229-236 ◽  
Author(s):  
G.F. Ijpelaar ◽  
M. Groenendijk ◽  
J.C. Kruithof ◽  
J.C. Schippers

Fenton process, known as Advanced Oxidation Process for the degradation of organic pollutants in waste and drinking water, was studied for the combination of iron removal and pesticide control in anaerobic groundwater. The combined effect of aeration and rapid sand filtration, which are commonly applied in groundwater treatment, was studied in a pilot plant. Pesticide degradation was performed on laboratory scale. It was found that addition of 2 mg/L H2O2 prior to aeration improved the removal of iron without hindering the filtration processes of manganese removal and nitrification. Under these conditions, the laboratory-scale tests showed pesticide degradations of up to 80% (influent concentration 1.6-2.5 μg/L). Dosing 8.5 mg/L H2O2 all selected pesticides were converted more than 80%. However, this dose appeared to have an adverse effect on the removal of iron and manganese and the nitrification process. This is attributed to the presence of relatively high concentrations H2O2 in the water entering the rapid sand filter. By filtration AOC, formed during oxidation with the low H2O2 dose, was reduced from about 70 μg/L to about 15-20 μg Acetate-C/L. Bromate formation did not occur. Residual H2O2 varied from 0.1-0.2 mg/L (2 mg/L H2O2 dose) to 0.2-0.4 mg/L (8.5 mg/L H2O2 dose) which is higher than the proposed guideline of 0.019 mg/L.


Author(s):  
John Whitehead ◽  
Paulo Waltrich ◽  
Richard Hughes ◽  
Karsten Thompson

Offshore drilling and production operations can result in spills or leaks of hydrocarbons into seabed sediments, which can potentially contaminate these sediments with oil. If this oil trapped later migrates to the water surface it has the potential for negative environmental impacts. For proper contingency planning and to avoid larger consequences in the environment, it is essential to understand mechanisms and rates for hydrocarbon migration from oil containing sediments to the water surface as well as how much will remain trapped in the sediments. It is believed that the amount of oil transported out of the sediment can be affected by tidal pumping, a common form of Subterranean Ground Water Discharge (SGD). However, we could find no study investigating the phenomenon of fluid flow in subsea sediments saturated with oil and the effects of tidal pumping. This study presents an experimental investigation of tidal pumping to determine if it is a possible mechanism to describe the appearance of an oil on the ocean surface above a sediment bed containing oil. An experimental apparatus was constructed of clear PVC pipe allowing for oil migration to be monitored as it flowed out of a sand pack containing oil, while tidal pressure oscillations were applied in three different manners. The effect of tidal pumping was simulated via compression of air above the water (which simulated the increasing static head from tidal exchange). Experimental results show that sustained oil release occurred from all tests, and tests with oscillating pressure produced for longer periods of time. Furthermore, the experimental results showed that the oil migration rate was affected by grain size, oil saturation, and oscillation wave type. In the static experiments, a linear relationship between grain size and permeability was observed, as is well-known in fluid flow in porous medium. However, the oil recovery does not show a linear relationship with viscosity, as the oil recovery only changed by 50% for a nearly 400% variation in viscosity. In all oscillating experiments the rate and ultimate recovery was less than the comparable static experiments. This leads to the preliminary conclusion that with an oscillating pressure on top of a sand pack, movement of a non-replenishing source of oil is suppressed by pressure oscillation.


2014 ◽  
Vol 15 (2) ◽  
pp. 411-420 ◽  
Author(s):  
Tinglin Huang ◽  
Xin Cao ◽  
Gang Wen ◽  
Yingming Guo

The chemical adsorption of dissolved oxygen (DO) by co-oxide filter film-coated sands, formed through the filtration of ground water containing high concentrations of ammonia, manganese and iron, were studied. The results showed that the filter film consisted of silicates, carbonates, manganese and iron oxides and was constructed in a three-layer porous structure. The specific area of film-coated sands was 6.5 m2/g. The chemical adsorption sites of DO are composed of silicates, iron and manganese atoms, and the adsorption was a weak chemical effect. The O2− is the adsorbed species of DO.


2017 ◽  
Vol 68 (10) ◽  
pp. 1935 ◽  
Author(s):  
Rodrigo Moncayo-Estrada ◽  
Carlos Escalera-Gallardo ◽  
Miriam Arroyo-Damián ◽  
Oswaldo Campos-Campos ◽  
José T. Silva-García

Herein we provide a framework for evaluating the spatiotemporal variation of nitrate and ammonium and their relationships with environmental and anthropogenic variables at different scales. Bimonthly samples were collected from 28 sites in the Duero River, Mexico, from May to December 2013. The river flow changed and lost connectivity during the dry season because more water was diverted for irrigation. Four sites had the highest nitrate and ammonium values (7.6 and 22.1mgL–1 respectively), which were related to direct waste water discharge. The remaining 24 sites were analysed using a multivariate approach. Using hierarchical cluster analysis, seasonal trends were identified with two groupings during July and five in December. Sites were grouped into those with constant discharge and nitrates affected by springs and those with poor water quality (high concentrations of ammonium). Non-metric multidimensional scaling simultaneously revealed the variation in time and space, organised sites into an environmental ammonium gradient and differentiated between seasons according to nitrate levels. Regression tree analysis established a relationship between nutrients and independent variables. At the landscape level, the agricultural area affected nitrate (75%) and urban area affected ammonium (45%); at the basin level, road density influenced both parameters (10.68km per 25km2).


Sign in / Sign up

Export Citation Format

Share Document