scholarly journals Does hippocampal volume explain performance differences on hippocampal-dependent tasks?

2020 ◽  
Author(s):  
Ian A. Clark ◽  
Anna M. Monk ◽  
Victoria Hotchin ◽  
Gloria Pizzamiglio ◽  
Alice Liefgreen ◽  
...  

AbstractMarked disparities exist across healthy individuals in their ability to imagine scenes, recall autobiographical memories, think about the future and navigate in the world. The importance of the hippocampus in supporting these critical cognitive functions has prompted the question of whether differences in hippocampal grey matter volume could be one source of performance variability. Evidence to date has been somewhat mixed. In this study we sought to mitigate issues that commonly affect these types of studies. Data were collected from a large sample of 217 young, healthy adult participants, including whole brain structural MRI data (0.8mm isotropic voxels) and widely-varying performance on scene imagination, autobiographical memory, future thinking and navigation tasks. We found little evidence that hippocampal grey matter volume was related to task performance in this healthy sample. This was the case using different analysis methods (voxel-based morphometry, partial correlations), when whole brain or hippocampal regions of interest were examined, when comparing different sub-groups (divided by gender, task performance, self-reported ability), and when using latent variables derived from across the cognitive tasks. Hippocampal grey matter volume may not, therefore, significantly influence performance on tasks known to require the hippocampus in healthy people. Perhaps only in extreme situations, as in the case of licensed London taxi drivers, are measurable ability-related hippocampus volume changes consistently exhibited.HighlightsEvidence is mixed about whether hippocampal volume affects cognitive task performanceThis is particularly the case concerning individual differences in healthy peopleWe collected structural MRI data from 217 healthy peopleThey also had widely-varying performance on cognitive tasks linked to the hippocampusIn-depth analyses showed little evidence hippocampal volume affected task performance

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
M. G. Ramesh Babu ◽  
Rajagopal Kadavigere ◽  
Prakashini Koteshwara ◽  
Brijesh Sathian ◽  
Kiranmai S. Rai

Abstract Studies provide evidence that practicing meditation enhances neural plasticity in reward processing areas of brain. No studies till date, provide evidence of such changes in Rajyoga meditation (RM) practitioners. The present study aimed to identify grey matter volume (GMV) changes in reward processing areas of brain and its association with happiness scores in RM practitioners compared to non-meditators. Structural MRI of selected participants matched for age, gender and handedness (n = 40/group) were analyzed using voxel-based morphometric method and Oxford Happiness Questionnaire (OHQ) scores were correlated. Significant increase in OHQ happiness scores were observed in RM practitioners compared to non-meditators. Whereas, a trend towards significance was observed in more experienced RM practitioners, on correlating OHQ scores with hours of meditation experience. Additionally, in RM practitioners, higher GMV were observed in reward processing centers—right superior frontal gyrus, left inferior orbitofrontal cortex (OFC) and bilateral precuneus. Multiple regression analysis showed significant association between OHQ scores of RM practitioners and reward processing regions right superior frontal gyrus, left middle OFC, right insula and left anterior cingulate cortex. Further, with increasing hours of RM practice, a significant positive association was observed in bilateral ventral pallidum. These findings indicate that RM practice enhances GMV in reward processing regions associated with happiness.


2017 ◽  
Vol 306 ◽  
pp. 68-75 ◽  
Author(s):  
Tetsuya Akaishi ◽  
Ichiro Nakashima ◽  
Shunji Mugikura ◽  
Masashi Aoki ◽  
Kazuo Fujihara

2022 ◽  
Vol 8 (1) ◽  
pp. 205521732110707
Author(s):  
Satori Ajitomi ◽  
Juichi Fujimori ◽  
Ichiro Nakashima

Background Two-dimensional (2D) measures have been proposed as potential proxies for whole-brain volume in multiple sclerosis (MS). Objective To verify whether 2D measurements by routine MRI are useful in predicting brain volume or disability in MS. Methods In this cross-sectional analysis, eighty-five consecutive Japanese MS patients—relapsing-remitting MS (81%) and progressive MS (19%)—underwent 1.5 Tesla T1-weighted 3D MRI examinations to measure whole-brain and grey matter volume. 2D measurements, namely, third ventricle width, lateral ventricle width (LVW), brain width, bicaudate ratio, and corpus callosum index (CCI), were obtained from each scan. Correlations between 2D measurements and 3D measurements, the Expanded Disability Status Scale (EDSS), or processing speed were analysed. Results The third and lateral ventricle widths were well-correlated with the whole-brain volume ( p < 0.0001), grey matter volume ( p < 0.0001), and EDSS scores ( p = 0.0001, p = .0004, respectively).The least squares regression model revealed that 78% of the variation in whole-brain volume could be explained using five explanatory variables, namely, LVW, CCI, age, sex, and disease duration. By contrast, the partial correlation coefficient excluding the effect of age showed that the CCI was significantly correlated with the EDSS and processing speed ( p < 0.0001). Conclusion Ventricle width correlated well with brain volumes, while the CCI correlated well with age-independent (i.e. disease-induced) disability.


Brain ◽  
2020 ◽  
Vol 143 (2) ◽  
pp. 635-649 ◽  
Author(s):  
Alexa Pichet Binette ◽  
Julie Gonneaud ◽  
Jacob W Vogel ◽  
Renaud La Joie ◽  
Pedro Rosa-Neto ◽  
...  

Abstract Age being the main risk factor for Alzheimer’s disease, it is particularly challenging to disentangle structural changes related to normal brain ageing from those specific to Alzheimer’s disease. Most studies aiming to make this distinction focused on older adults only and on a priori anatomical regions. Drawing on a large, multi-cohort dataset ranging from young adults (n = 468; age range 18–35 years), to older adults with intact cognition (n = 431; age range 55–90 years) and with Alzheimer’s disease (n = 50 with late mild cognitive impairment and 71 with Alzheimer’s dementia, age range 56–88 years), we investigated grey matter organization and volume differences in ageing and Alzheimer’s disease. Using independent component analysis on all participants’ structural MRI, we first derived morphometric networks and extracted grey matter volume in each network. We also derived a measure of whole-brain grey matter pattern organization by correlating grey matter volume in all networks across all participants from the same cohort. We used logistic regressions and receiver operating characteristic analyses to evaluate how well grey matter volume in each network and whole-brain pattern could discriminate between ageing and Alzheimer’s disease. Because increased heterogeneity is often reported as one of the main features characterizing brain ageing, we also evaluated interindividual heterogeneity within morphometric networks and across the whole-brain organization in ageing and Alzheimer’s disease. Finally, to investigate the clinical validity of the different grey matter features, we evaluated whether grey matter volume or whole-brain pattern was related to clinical progression in cognitively normal older adults. Ageing and Alzheimer’s disease contributed additive effects on grey matter volume in nearly all networks, except frontal lobe networks, where differences in grey matter were more specific to ageing. While no networks specifically discriminated Alzheimer’s disease from ageing, heterogeneity in grey matter volumes across morphometric networks and in the whole-brain grey matter pattern characterized individuals with cognitive impairments. Preservation of the whole-brain grey matter pattern was also related to lower risk of developing cognitive impairment, more so than grey matter volume. These results suggest both ageing and Alzheimer’s disease involve widespread atrophy, but that the clinical expression of Alzheimer’s disease is uniquely associated with disruption of morphometric organization.


2021 ◽  
pp. 026988112110505
Author(s):  
Paul Faulkner ◽  
Susanna Lucini Paioni ◽  
Petya Kozhuharova ◽  
Natasza Orlov ◽  
David J Lythgoe ◽  
...  

Background: Depression and low mood are leading contributors to disability worldwide. Research indicates that clinical depression may be associated with low creatine concentrations in the brain and low prefrontal grey matter volume. Because subclinical depression also contributes to difficulties in day-to-day life, understanding the neural mechanisms of depressive symptoms in all individuals, even at a subclinical level, may aid public health. Methods: Eighty-four young adult participants completed the Depression, Anxiety and Stress Scale (DASS) to quantify severity of depression, anxiety and stress, and underwent 1H-Magnetic Resonance Spectroscopy of the medial prefrontal cortex and structural magnetic resonance imaging (MRI) to determine whole-brain grey matter volume. Results/outcomes: DASS depression scores were negatively associated (a) with concentrations of creatine (but not other metabolites) in the prefrontal cortex and (b) with grey matter volume in the right superior medial frontal gyrus. Medial prefrontal creatine concentrations and right superior medial frontal grey matter volume were positively correlated. DASS anxiety and DASS stress scores were not related to prefrontal metabolite concentrations or whole-brain grey matter volume. Conclusions/interpretations: This study provides preliminary evidence from a representative group of individuals who exhibit a range of depression levels that prefrontal creatine and grey matter volume are negatively associated with depression. While future research is needed to fully understand this relationship, these results provide support for previous findings, which indicate that increasing creatine concentrations in the prefrontal cortex may improve mood and well-being.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
J. R. Pfeiffer ◽  
Angela C. Bustamante ◽  
Grace S. Kim ◽  
Don Armstrong ◽  
Annchen R. Knodt ◽  
...  

Abstract Background Poor family emotional health (FEH) during childhood is prevalent and impactful, and likely confers similar neurodevelopmental risks as other adverse social environments. Pointed FEH study efforts are underdeveloped, and the mechanisms by which poor FEH are biologically embedded are unclear. The current exploratory study examined whether variability in 5-methyl-cytosine (5mC) and fronto-limbic grey matter volume may represent pathways through which FEH may become biologically embedded. Results In 98 university students aged 18–22 years, retrospective self-reported childhood FEH was associated with right hemisphere hippocampus (b = 10.4, p = 0.005), left hemisphere amygdala (b = 5.3, p = 0.009), and right hemisphere amygdala (b = 5.8, p = 0.016) volumes. After pre-processing and filtering to 5mC probes correlated between saliva and brain, analyses showed that childhood FEH was associated with 49 5mC principal components (module eigengenes; MEs) (prange = 3 × 10–6 to 0.047). Saliva-derived 5mC MEs partially mediated the association between FEH and right hippocampal volume (Burlywood ME indirect effect b = − 111, p = 0.014), and fully mediated the FEH and right amygdala volume relationship (Pink4 ME indirect effect b = − 48, p = 0.026). Modules were enriched with probes falling in genes with immune, central nervous system (CNS), cellular development/differentiation, and metabolic functions. Conclusions Findings extend work highlighting neurodevelopmental variability associated with adverse social environment exposure during childhood by specifically implicating poor FEH, while informing a mechanism of biological embedding. FEH-associated epigenetic signatures could function as proxies of altered fronto-limbic grey matter volume associated with poor childhood FEH and inform further investigation into primarily affected tissues such as endocrine, immune, and CNS cell types.


Neuroscience ◽  
2011 ◽  
Vol 197 ◽  
pp. 225-232 ◽  
Author(s):  
S.C. Mueller ◽  
D.P. Merke ◽  
E.W. Leschek ◽  
S. Fromm ◽  
C. Grillon ◽  
...  

2022 ◽  
Author(s):  
Belinda M Brown ◽  
Jaisalmer de Frutos Lucas ◽  
Tenielle Porter ◽  
Natalie Frost ◽  
Michael Vacher ◽  
...  

Background: Grey matter atrophy occurs as a function of ageing and is accelerated in dementia. Previous research suggests physical activity attenuates grey matter loss; however, there appears to be individual variability in this effect. Understanding factors that can affect the relationship between physical activity and brain volume may enable prediction of individual response, and aid in identifying those that gain the greatest neural benefits from physical activity. The current study examined the relationship between objectively-measured physical activity and brain volume; and whether this relationship is moderated by age, sex, or a priori candidate genetic factors. Methods: Data from 10,083 men and women (50 years and over) of the UK Biobank were used to examine: 1) the relationship between objectively-measured physical activity and brain volume; and 2) whether the relationship between objectively-measured physical activity and brain volume is moderated by age, sex, brain-derived neurotrophic factor (BDNF) Val66Met, or apolipoprotein (APOE) e4 allele carriage. All participants underwent a magnetic resonance imaging scan to quantify grey matter volumes, physical activity monitoring via accelerometry, and genotyping. Results: Physical activity was associated with total grey matter volume (B = 0.14, p = 0.001, q = 0.005) and right hippocampal volume (B = 1.45, p = 0.008, q = 0.016). The physical activity*sex interaction predicted cortical grey matter (B = 0.22, p = 0.003, q = 0.004), total grey matter (B = 0.30, p < 0.001, q = 0.001), and right hippocampal volume (B = 3.60, p = 0.001, q = 0.002). Post-hoc analyses revealed males received benefit from higher physical activity levels, in terms of greater cortical grey matter volume (B = 0.13, p = 0.01), total grey matter volume (B=0.23, p < 0.001), and right hippocampal volume (B = 3.05, p = 0.008). No moderating effects of age, APOE e4 allele carriage, or BDNF Val66Met genotype were observed. Discussion: Our results indicate that in males, but not females, an association exists between objectively-measured physical activity and grey matter volume. Future research should evaluate longitudinal brain volumetrics to better understand the nature of sex-effects on the relationship between physical activity and brain volume.


Sign in / Sign up

Export Citation Format

Share Document