scholarly journals NETWORK DATABASE SECURITY WITH INTELLECTUAL ACCESS SUPERVISION USING OUTLIER DETECTION TECHNIQUES

Author(s):  
Chippada Nagamani ◽  
Suneetha Chittineni
2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Laura Millán-Roures ◽  
Irene Epifanio ◽  
Vicente Martínez

A functional data analysis (FDA) based methodology for detecting anomalous flows in urban water networks is introduced. Primary hydraulic variables are recorded in real-time by telecontrol systems, so they are functional data (FD). In the first stage, the data are validated (false data are detected) and reconstructed, since there could be not only false data, but also missing and noisy data. FDA tools are used such as tolerance bands for FD and smoothing for dense and sparse FD. In the second stage, functional outlier detection tools are used in two phases. In Phase I, the data are cleared of anomalies to ensure that data are representative of the in-control system. The objective of Phase II is system monitoring. A new functional outlier detection method is also proposed based on archetypal analysis. The methodology is applied and illustrated with real data. A simulated study is also carried out to assess the performance of the outlier detection techniques, including our proposal. The results are very promising.


Symmetry ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 328 ◽  
Author(s):  
Mahmood Safaei ◽  
Shahla Asadi ◽  
Maha Driss ◽  
Wadii Boulila ◽  
Abdullah Alsaeedi ◽  
...  

A wireless sensor network (WSN) is defined as a set of spatially distributed and interconnected sensor nodes. WSNs allow one to monitor and recognize environmental phenomena such as soil moisture, air pollution, and health data. Because of the very limited resources available in sensors, the collected data from WSNs are often characterized as unreliable or uncertain. However, applications using WSNs demand precise readings, and uncertainty in data reading can cause serious damage (e.g., health monitoring data). Therefore, an efficient local/distributed data processing algorithm is needed to ensure: (1) the extraction of precise and reliable values from noisy readings; (2) the detection of anomalies from data reported by sensors; and (3) the identification of outlier sensors in a WSN. Several works have been conducted to achieve these objectives using several techniques such as machine learning algorithms, mathematical modeling, and clustering. The purpose of this paper is to conduct a systematic literature review to report the available works on outlier and anomaly detection in WSNs. The paper highlights works conducted from January 2004 to October 2018. A total of 3520 papers are reviewed in the initial search process. Later, these papers are filtered by title, abstract, and contents, and a total of 117 papers are selected. These papers are examined to answer the defined research questions. The current paper presents an improved taxonomy of outlier detection techniques. This will help researchers and practitioners to find the most relevant and recent studies related to outlier detection in WSNs. Finally, the paper identifies existing gaps that future studies can fill.


2020 ◽  
Vol 2020 ◽  
pp. 1-18
Author(s):  
Arshed Ahmed ◽  
Muhammad Sajjad Khan ◽  
Noor Gul ◽  
Irfan Uddin ◽  
Su Min Kim ◽  
...  

In a cognitive radio (CR), opportunistic secondary users (SUs) periodically sense the primary user’s (PU’s) existence in the network. Spectrum sensing of a single SU is not precise due to wireless channels and hidden terminal issues. One promising solution is cooperative spectrum sensing (CSS) that allows multiple SUs’ cooperation to sense the PU’s activity. In CSS, the misdetection of the PU signal by the SU causes system inefficiency that increases the interference to the system. This paper introduces a new category of a malicious user (MU), i.e., a lazy malicious user (LMU) with two operating modes such as an awakened mode and sleeping mode. In the awakened mode, the LMU reports accurately the PU activity like other normal cooperative users, while in the sleeping mode, it randomly reports abnormal sensing data similar to an always yes malicious user (AYMU) or always no malicious user (ANMU). In this paper, statistical analysis is carried out to detect the behavior of different abnormal users and mitigate their harmful effects. Results are collected for the different hard combination schemes in the presence of the LMU and opposite categories of malicious users (OMUs). Simulation results collected for the error probability, detection probability, and false alarm at different levels of the signal-to-noise ratios (SNRs) and various contributions of the LMUs and OMUs confirmed that out of the many outlier detection tests, the median test performs better in MU detection by producing minimum error probability results in the CSS. The results are further compared by keeping minimum SNR values with the mean test, quartile test, Grubbs test, and generalized extreme studentized deviate (GESD) test. Similarly, performance gain of the median test is examined further separately in the AND, OR, and voting schemes that show minimum error probability results of the proposed test as compared with all other outlier detection tests in discarding abnormal sensing reports.


Sign in / Sign up

Export Citation Format

Share Document