Modeling And Analysis Of The Impact Of Smart Mobile Devices On Learning Effect Based On Partial Least Square Regression

Author(s):  
Meng Qu
2020 ◽  
Vol 27 (35) ◽  
pp. 43439-43451 ◽  
Author(s):  
Jianfeng Yang ◽  
Yumin Duan ◽  
Xiaoni Yang ◽  
Mukesh Kumar Awasthi ◽  
Huike Li ◽  
...  

2021 ◽  
Vol 36 (06) ◽  
Author(s):  
NGUYEN MINH QUANG ◽  
TRAN NGUYEN MINH AN ◽  
NGUYEN HOANG MINH ◽  
TRAN XUAN MAU ◽  
PHAM VAN TAT

In this study, the stability constants of metal-thiosemicarbazone complexes, logb11 were determined by using the quantitative structure property relationship (QSPR) models. The molecular descriptors, physicochemical and quantum descriptors of complexes were generated from molecular geometric structure and semi-empirical quantum calculation PM7 and PM7/sparkle. The QSPR models were built by using the ordinary least square regression (QSPROLS), partial least square regression (QSPRPLS), primary component regression (QSPRPCR) and artificial neural network (QSPRANN). The best linear model QSPROLS (with k of 9) involves descriptors C5, xp9, electric energy, cosmo volume, N4, SsssN, cosmo area, xp10 and core-core repulsion. The QSPRPLS, QSPR PCR and QSPRANN models were developed basing on 9 varibles of the QSPROLS model. The quality of the QSPR models were validated by the statistical values; The QSPROLS: R2train = 0.944, Q2LOO = 0.903 and MSE = 1.035; The QSPRPLS: R2train = 0.929, R2CV = 0.938 and MSE = 1.115; The QSPRPCR: R2train = 0.934, R2CV = 0.9485 and MSE = 1.147. The neural network model QSPRANN with architecture I(9)-HL(12)-O(1) was presented also with the statistical values: R2train = 0.9723, and R2CV = 0.9731. The QSPR models also were evaluated externally and got good performance results with those from the experimental literature.


2021 ◽  
Vol 5 (1) ◽  
pp. 61
Author(s):  
Rachid Laref ◽  
Etienne Losson ◽  
Alexandre Sava ◽  
Maryam Siadat

Low-cost gas sensors detect pollutants gas at the parts-per-billion level and may be installed in small devices to densify air quality monitoring networks for the spread analysis of pollutants around an emissive source. However, these sensors suffer from several issues such as the impact of environmental factors and cross-interfering gases. For instance, the ozone (O3) electrochemical sensor senses nitrogen dioxide (NO2) and O3 simultaneously without discrimination. Alphasense proposes the use of a pair of sensors; the first one, NO2-B43F, is equipped with a filter dedicated to measure NO2. The second one, OX-B431, is sensitive to both NO2 and O3. Thus, O3 concentration can be obtained by subtracting the concentration of NO2 from the sum of the two concentrations. This technique is not practical and requires calibrating each sensor individually, leading to biased concentration estimation. In this paper, we propose Partial Least Square regression (PLS) to build a calibration model including both sensors’ responses and also temperature and humidity variations. The results obtained from data collected in the field for two months show that PLS regression provides better gas concentration estimation in terms of accuracy than calibrating each sensor individually.


2020 ◽  
Vol 33 (10) ◽  
pp. 1633-1641
Author(s):  
Dae-Hyun Lee ◽  
Seung-Hyun Lee ◽  
Byoung-Kwan Cho ◽  
Collins Wakholi ◽  
Young-Wook Seo ◽  
...  

Objective: The objective of this study was to develop a model for estimating the carcass weight of Hanwoo cattle as a function of body measurements using three different modeling approaches: i) multiple regression analysis, ii) partial least square regression analysis, and iii) a neural network.Methods: Data from a total of 134 Hanwoo cattle were obtained from the National Institute of Animal Science in South Korea. Among the 372 variables in the raw data, 20 variables related to carcass weight and body measurements were extracted to use in multiple regression, partial least square regression, and an artificial neural network to estimate the cold carcass weight of Hanwoo cattle by any of seven body measurements significantly related to carcass weight or by all 19 body measurement variables. For developing and training the model, 100 data points were used, whereas the 34 remaining data points were used to test the model estimation.Results: The R2 values from testing the developed models by multiple regression, partial least square regression, and an artificial neural network with seven significant variables were 0.91, 0.91, and 0.92, respectively, whereas all the methods exhibited similar R2 values of approximately 0.93 with all 19 body measurement variables. In addition, relative errors were within 4%, suggesting that the developed model was reliable in estimating Hanwoo cattle carcass weight. The neural network exhibited the highest accuracy.Conclusion: The developed model was applicable for estimating Hanwoo cattle carcass weight using body measurements. Because the procedure and required variables could differ according to the type of model, it was necessary to select the best model suitable for the system with which to calculate the model.


2009 ◽  
Vol 620-622 ◽  
pp. 21-24
Author(s):  
Shuang Ping Yang ◽  
Yong Hui Song ◽  
Liu Hua Xin

With practical data of the BF ironmaking from Jiuquan Iron&Steel Cooperation Ltd. (JISC), taking the quality of pig iron as evaluation indicator, mathematical models based on the least square regression and partial least square regression were set up respectively by co-relation analysis of feeding-to-product interval of the BF processing. The calculation results showed that the reasonable description can be obtained by the partial least square regression model; and 10 of 29 parameters with obvious impact on the BF operation were listed accordingly. Meanwhile, an optimal group of parameters was found by genetic algorism calculation method. The optimal index of the group was 99.13%. This study is beneficial to the improvement of feeding adjustment and optimal operation of BF ironmaking.


Sign in / Sign up

Export Citation Format

Share Document