Evaluating the effects of regulated deficit irrigation on soil water movement, nitrate transport, photosynthetic characteristics, grain yield, water and N use efficiency under furrow irrigation

2020 ◽  
Vol 67 (2/3/4) ◽  
pp. 153
Author(s):  
Lin Chen ◽  
Xiaofei Liu ◽  
Liangjun Fei
2013 ◽  
Vol 148 ◽  
pp. 15-23 ◽  
Author(s):  
Jianquan Qin ◽  
S.M. Impa ◽  
Qiyuan Tang ◽  
Shenghai Yang ◽  
Jian Yang ◽  
...  

2001 ◽  
Vol 36 (5) ◽  
pp. 757-764 ◽  
Author(s):  
Luís Sangoi ◽  
Márcio Ender ◽  
Altamir Frederico Guidolin ◽  
Milton Luiz de Almeida ◽  
Valmor Antônio Konflanz

Genetic selection of maize hybrids is often conducted using high N rates during the breeding cycle. This procedure may either lead to the release of genotypes that present nitrogen luxury consumption or require a stronger N input to accomplish their yield potential. This work was carried out to evaluate the effects of N rates on grain yield and N use efficiency of hybrids cultivated in different decades in Southern Brazil. The trial was performed in Lages, Santa Catarina State. A split plot design was used. Hybrids Ag 12, Ag 28, Ag 303 and Ag 9012, released during the 60's, 70's, 80's and 90's, respectively, were evaluated in the main plots. Nitrogen rates equivalent to 0, 50, 100 and 200 kg ha-1 were side-dressed in the split-plots when each hybrid had six fully expanded leaves. Modern-day hybrid Ag 9012 had higher grain yield than hybrids of earlier eras, regardless of N rates. Under high doses of N, the older hybrids Ag 12 and Ag 28 took up more N and presented higher values of shoot dry matter at flowering than Ag 9012. Nonetheless, they set less grains per ear which contributed to decrease their grain yield and N use efficiency.


2016 ◽  
Vol 73 ◽  
pp. 144-151 ◽  
Author(s):  
S. Stamatiadis ◽  
C. Tsadilas ◽  
V. Samaras ◽  
J.S. Schepers ◽  
K. Eskridge

Agronomy ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 23
Author(s):  
Ming Du ◽  
Wenzhong Zhang ◽  
Jiping Gao ◽  
Meiqiu Liu ◽  
Yan Zhou ◽  
...  

Although nitrogen (N), phosphorus (P), and potassium (K) co-application improves crop growth, yield, and N use efficiency (NUE) of rice, few studies have investigated the mechanisms underlying these interactions. To investigate root morphological and physiological characteristics and determine yield and nitrogen use parameters, rhizo-box experiments were performed on rice using six treatments (no fertilizer, PK, N, NK, NP, and NPK) and plants were harvested at maturity. The aboveground biomass at the elongating stage and grain yield at maturity for NPK treatment were higher than the sum of PK and N treatments. N, P, and K interactions enhanced grain yield due to an increase in agronomic N use efficiency (NAE). The co-application of N, P, and K improved N uptake and N recovery efficiency, exceeding the decreases in physiological and internal NUE and thereby improving NAE. Increases in root length and biomass, N uptake per unit root length/root biomass, root oxidation activity, total roots absorption area, and roots active absorption area at the elongating stage improved N uptake via N, P, and K interactions. The higher total N uptake from N, P, and K interactions was due to improved root characteristics, which enhanced the rice yield and NUE.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Jacob T. Bushong ◽  
Eric C. Miller ◽  
Jeremiah L. Mullock ◽  
D. Brian Arnall ◽  
William R. Raun

With the demand for maize increasing, production has spread into more water limited, semiarid regions. Couple this with the increasing nitrogen (N) fertilizer costs and environmental concerns and the need for proper management practices has increased. A trial was established to evaluate the effects of different preplant N fertilizer sources on maize cultivated under deficit irrigation or rain-fed conditions on grain yield, N use efficiency (NUE), and water use efficiency (WUE). Two fertilizer sources, ammonium sulfate (AS) and urea ammonium nitrate (UAN), applied at two rates, 90 and 180 kg N ha−1, were evaluated across four site-years. Deficit irrigation improved grain yield, WUE, and NUE compared to rain-fed conditions. The preplant application of a pure ammoniacal source of N fertilizer, such as AS, had a tendency to increase grain yields and NUE for rain-fed treatments. Under irrigated conditions, the use of UAN as a preplant N fertilizer source performed just as well or better at improving grain yield compared to AS, as long as the potential N loss mechanisms were minimized. Producers applying N preplant as a single application should adjust rates based on a reasonable yield goal and production practice.


2016 ◽  
Vol 96 (3) ◽  
pp. 392-403 ◽  
Author(s):  
Dilip K. Biswas ◽  
Bao-Luo Ma

A two-year (2010–2011) field experiment was undertaken to examine the effect of nitrogen (N) rate (0, 100, 150, and 200 kg N ha−1) and N source (urea, calcium ammonium nitrate; ammonium sulphate) on canopy reflectance, chlorophyll pigments, photosynthesis, yield, grain quality, and N-use efficiency in corn. However, the physiological observations were made only in 2011. We found that stover biomass was unaffected by higher N rate beyond 150 kg N ha−1 in both years. Higher N rates did not provide a yield advantage as compared to 150 kg N ha−1 in 2010, but the highest grain yield was produced with 200 kg N ha−1 in 2011. The higher grain yield by N application was attributed to a greater kernel size in both years. Corn stover [N] was found to increase with increasing N rates in both years. Kernel [N] only responded to the high N rate in 2010. There was no change in the kernel density as affected by N rate in both years. An increased N addition resulted in a decrease in both N-uptake efficiency and agronomic-N use efficiency in both years. There was an inconsistent effect of N source on yield and N use efficiency indices in the corn over two years.


2018 ◽  
Vol 3 (4) ◽  
pp. 454-461
Author(s):  
Md Rafiqul Islam ◽  
Mahthir Been Mohammad ◽  
Mst Tazmin Akhter ◽  
Md Moyeed Hasan Talukder ◽  
Kawsar Hossen

An experiment was conducted at the Soil Science Field Laboratory of Bangladesh Agricultural University, Mymensingh during boro season of 2016 to evaluate the effect of deep placement of nitrogen (N) fertilizers on N use efficiency and yield of BRRI dhan29 under continuous flooded condition. The soil was silt loam in texture having pH 6.27, organic matter content 1.95%, total N 0.136%, available P 3.16 ppm, exchangeable K 0.095 me%, available S 10.5 ppm and EC 348 μS cm-1. The experiment was laid out in a Randomized Complete Block Design (RCBD) with eight treatments and three replications. The treatments were T1 [Control], T2 [Prilled Urea, 130 kg N ha-1] , T3 [USG, 130 kg N ha-1], T4 [USG, 104 kg N ha-1], T5 [USG, 78 kg N ha-1], T6 [NPK briquette , 129 kg N ha-1], T7 [NPK briquette, 102 kg N ha-1] and T8 [NPK briquette, 78 kg N ha-1]. All the treatments except T6, T7 and T8 received 25 kg P and 64 kg K ha-1 as TSP and MoP, respectively. In T6, T7 and T8 treatments, P and K were supplied from NPK briquettes. Prilled urea was applied in three equal splits. USG and NPK briquettes were applied at 10 DAT and were placed at 8-10 cm depth between four hills at every alternate row. The results demonstrate that all the yield components except 1000-grain weight and yields of BRRI dhan29 responded significantly to the deep placement of N in the form of USG and NPK briquettes under continuous flooded condition. The highest grain yield of 6561 kg ha-1 was recorded in T3 [USG, 130 kg N ha-1] which was statistically similar to that ofT4 [USG, 104 kg N ha-1].The highest straw yield of 6876 kg ha-1 was obtained in T3 [USG, 130 kg N ha-1]. The lowest grain yield (3094 kg ha-1) and straw yield (3364 kg ha-1) were found for T1 (Control). The deep placement of USG and NPK briquettes enhanced the recovery of applied N and N use efficiency in comparison with the broadcast application of PU. The highest value of NUE (32.05 kg grain increase per kg N applied) was obtained in T5 [USG, 78 kg N ha-1] followed by T4 [30.75 kg grain increase per kg N applied) and the lowest value was found in T8 [130 kg N ha-1 from PU]. Based on yield, N use efficiency and cost-benefit analysis, an application of 104 kg N ha-1 as USG can be recommended as the best treatment for achieving satisfactory yield of boro rice (cv. BRRI dhan29) at BAU farm and at adjacent areas under AEZ 9 (Old Brahmaputra Floodplain).Asian J. Med. Biol. Res. December 2017, 3(4): 454-461


Agriculture ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 541
Author(s):  
Gerhard Moitzi ◽  
Reinhard W. Neugschwandtner ◽  
Hans-Peter Kaul ◽  
Helmut Wagentristl

Improvements in nitrogen (N) use efficiency in crop production are important for addressing the triple challenges of food security, environmental degradation and climate change. The three fertilizers, calcium ammonium nitrate (CAN), urea (Urea) and stabilized urea (Ureastab), were applied at a rate of 160 kg N ha−1 with two or three splits to winter wheat (Triticum aestivum L.) in the Pannonian climate region of eastern Austria. On average, over all fertilization treatments, the grain yield (GY) increased by about a quarter and the grain N concentration (GNC) doubled compared to the control without fertilization. Consequently, the grain N yield (NYGRAIN) was increased with N fertilization by 154%. The GY increased due to a higher grain density with no differences between N fertilizers but with a tendency of a higher grain yield with three compared to two splits. Three splits also slightly increased the GNC and consequently the NYGRAIN of CAN and Ureastab in one year. The removal of N fertilizer with the NYGRAIN (N surplus) was higher than the amount of applied fertilizer. Fertilization decreased the N use efficiency (NUE), the N uptake efficiency (NUpE) and the N utilization efficiency (NUtE) but increased the soil mineral nitrate (NO3-N) at harvest and the apparent N loss (ANL). Three compared to two applications resulted in a higher NO3-N at harvest but also a lower N surplus due to partly higher NYGRAIN. Consequently, the ANL was lower with three compared to two splits. Also, the NUpE and the apparent N recovery efficiency (ANRE) were higher with three splits. The best N treatment regarding highest above-ground biomass yield with lowest N surplus, N balance and ANL was the three-split treatment (50 CAN, 50 CAN, 60 liquid urea ammonium nitrate). Three splits can, under semi-arid conditions, be beneficial when aiming high-quality wheat for bread-making and also for reducing the N loss. Whereas, two splits are recommended when aiming only at high GY, e.g., for ethanol-wheat production.


Sign in / Sign up

Export Citation Format

Share Document