scholarly journals Parallel robot design incorporating a direct end effector sensing system

Author(s):  
Ahmed Shaik ◽  
Nkgatho S. Tlale ◽  
Glen Bright
Author(s):  
DU Hui ◽  
GAO Feng ◽  
PAN Yang

A novel 3-UP3R parallel mechanism with six degree of freedoms is proposed in this paper. One most important advantage of this mechanism is that the three translational and three rotational motions are partially decoupled: the end-effector position is only determined by three inputs, while the rotational angles are relative to all six inputs. The design methodology via GF set theory is brought out, using which the limb type can be determined. The mobility of the end-effector is analyzed. After that, the kinematic and velocity models are formulated. Then, workspace is studied, and since the robot is partially decoupled, the reachable workspace is also the dexterous workspace. In the end, both local and global performances are discussed using conditioning indexes. The experiment of real prototype shows that this mechanism works well and may be applied in many fields.


Author(s):  
Martin Hosek ◽  
Michael Valasek ◽  
Jairo Moura

This paper presents single- and dual-end-effector configurations of a planar three-degree of freedom parallel robot arm designed for automated pick-place operations in vacuum cluster tools for semiconductor and flat-panel-display manufacturing applications. The basic single end-effector configuration of the arm consists of a pivoting base platform, two elbow platforms and a wrist platform, which are connected through two symmetric pairs of parallelogram mechanisms. The wrist platform carries an end-effector, the position and angular orientation of which can be controlled independently by three motors located at the base of the robot. The joints and links of the mechanism are arranged in a unique geometric configuration which provides a sufficient range of motion for typical vacuum cluster tools. The geometric properties of the mechanism are further optimized for a given motion path of the robot. In addition to the basic symmetric single end-effector configuration, an asymmetric costeffective version of the mechanism is derived, and two dual-end-effector alternatives for improved throughput performance are described. In contrast to prior attempts to control angular orientation of the end-effector(s) of the conventional arms employed currently in vacuum cluster tools, all of the motors that drive the arm can be located at the stationary base of the robot with no need for joint actuators carried by the arm or complicated belt arrangements running through the arm. As a result, the motors do not contribute to the mass and inertia properties of the moving parts of the arm, no power and signal wires through the arm are necessary, the reliability and maintenance aspects of operation are improved, and the level of undesirable particle generation is reduced. This is particularly beneficial for high-throughput applications in vacuum and particlesensitive environments.


Electronics ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 745
Author(s):  
Marco Carpio ◽  
Roque Saltaren ◽  
Julio Viola ◽  
Cristian Calderon ◽  
Juan Guerra

The design of robot systems controlled by cables can be relatively difficult when it is approached from the mathematical model of the mechanism, considering that its approach involves non-linearities associated with different components, such as cables and pulleys. In this work, a simple and practical decoupled control structure proposal that requires practically no mathematical analysis was developed for the position control of a planar cable-driven parallel robot (CDPR). This structure was implemented using non-linear fuzzy PID and classic PID controllers, allowing performance comparisons to be established. For the development of this research, first the structure of the control system was proposed, based on an analysis of the cables involved in the movement of the end-effector (EE) of the robot when they act independently for each axis. Then a tuning of rules was carried out for fuzzy PID controllers, and Ziegler–Nichols tuning was applied to classic PID controllers. Finally, simulations were performed in MATLAB with the Simulink and Simscape tools. The results obtained allowed us to observe the effectiveness of the proposed structure, with noticeably better performance obtained from the fuzzy PID controllers.


2018 ◽  
Vol 11 (1) ◽  
Author(s):  
Nicholas Baron ◽  
Andrew Philippides ◽  
Nicolas Rojas

This paper presents a novel kinematically redundant planar parallel robot manipulator, which has full rotatability. The proposed robot manipulator has an architecture that corresponds to a fundamental truss, meaning that it does not contain internal rigid structures when the actuators are locked. This also implies that its rigidity is not inherited from more general architectures or resulting from the combination of other fundamental structures. The introduced topology is a departure from the standard 3-RPR (or 3-RRR) mechanism on which most kinematically redundant planar parallel robot manipulators are based. The robot manipulator consists of a moving platform that is connected to the base via two RRR legs and connected to a ternary link, which is joined to the base by a passive revolute joint, via two other RRR legs. The resulting robot mechanism is kinematically redundant, being able to avoid the production of singularities and having unlimited rotational capability. The inverse and forward kinematics analyses of this novel robot manipulator are derived using distance-based techniques, and the singularity analysis is performed using a geometric method based on the properties of instantaneous centers of rotation. An example robot mechanism is analyzed numerically and physically tested; and a test trajectory where the end effector completes a full cycle rotation is reported. A link to an online video recording of such a capability, along with the avoidance of singularities and a potential application, is also provided.


Robotica ◽  
2002 ◽  
Vol 20 (4) ◽  
pp. 367-374 ◽  
Author(s):  
Guilin Yang ◽  
I-Ming Chen ◽  
Song Huat Yeo ◽  
Wee Kiat Lim

In this paper, we focus on the base and tool calibration of a self-calibrated parallel robot. After the self-calibration of a parellel robot by using the built-in sensors in the passive joints, its kinematic transformation from the robot base to the mobile platform frame can be computed with sufficient accuracy. The base and tool calibration, hence, is to identify the kinematic errors in the fixed transformations from the world frame to the robot base frame and from the mobile platform frame to the tool (end-effector) frame in order to improve the absolute positioning accuracy of the robot. Using the mathematical tools from group theory and differential geometry, a simultaneous base and tool calibration model is formulated. Since the kinematic errors in a kinematic transformation can be represented by a twist, i.e. an element of se(3), the resultant calibration model is simple, explicit and geometrically meaningful. A least-square algorithm is employed to iteratively identify the error parameters. The simulation example shows that all the preset kinematic errors can be fully recovered within three to four iterations.


Author(s):  
Alberto Martini ◽  
Marco Troncossi ◽  
Marco Carricato ◽  
Alessandro Rivola

The study deals with the compensation of gravity loads in closed-loop mechanisms as a possible strategy for enhancing their working performance. This work focuses on the Orthoglide 5-axis, a prototypal parallel robot for milling operation, characterized by linear-delta architecture with two further serial DOFs. Starting from a general theory formerly proposed by the authors, gravity compensation of the mechanism is analytically carried out. The statically balanced Orthoglide 5-axis can be obtained by installing on one leg a proper set of extension springs and a simple additional linkage. A feasible design solution for developing the device in practice is presented. The proposed balancing device can be implemented with minor modifications of the original robot design, thus appearing a profitable solution to be possibly extended to other machinery with similar architecture.


Author(s):  
S El Hraiech ◽  
AH Chebbi ◽  
Z Affi ◽  
L Romdhane

This work deals with the estimation and the sensitivity analysis of the 3-UPU parallel robot error. Based on the Newton–Euler formalism, the robot dynamic model is given in a closed form. This model is validated by the software ADAMS. Using the interval analysis method, a new algorithm is proposed, which estimates the errors in the motion of the end-effector and the errors in the actuator forces as a function of the design parameters uncertainties. The obtained results show that the kinematic errors are minimal at the workspace center. Moreover, these errors increase as the platform moves along the vertical axis. It is also shown that kinematic errors in the actuator joints are the most influential parameters on the manipulator accuracy. Therefore, using actuators with a higher accuracy can highly reduce the errors in motion of the platform.


2018 ◽  
Vol 21 (2) ◽  
pp. 4-9 ◽  
Author(s):  
Patrick Kapita Mvemba ◽  
Simon Kidiamboko Guwa Gua Band ◽  
Aime Lay-Ekuakille ◽  
Nicola Ivan Giannoccaro

Robotica ◽  
2012 ◽  
Vol 31 (4) ◽  
pp. 657-667 ◽  
Author(s):  
Abraham Gonzalez-Hernandez ◽  
Eduardo Castillo-Castaneda

SUMMARYThis work presents a methodology using image analysis to estimate the experimental stiffness of a parallel robot, Parallix LKF-2040, a 3-degree-of-freedom manipulator. The proposed methodology has a simple implementation and can be applied to different architectures of parallel robots. This methodology uses image analysis and camera calibration techniques to estimate compliant displacements of mobile platform produced by several loads at the end effector level, and calculate stiffness in a specific position of mobile platform. Experimental results are presented for different positions within the workspace.


Robotics ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 65
Author(s):  
Jinwoo Jung

3D printing is a widely used technology that has been recently applied in construction to reduce construction time significantly. A large 3D printer often uses a traditional Cartesian robot with inherent problems, such as position errors and printing nozzle vibrations, due to the long, heavy horizontal beam carrying it and a large amount of power required to actuate the heavy beam. A cable-driven parallel robot (CDPR) can be a good alternative system to reduce the vibrations and necessary power because the robot’s lightweight cables can manipulate the printing nozzle. However, a large 3D printing CDPR should be carefully designed to maximize the workspace and avoid cable interference. It also needs to be stiff enough to reject disturbances from the environment properly. A CDPR with a retractable beam-type end-effector with cables through the guide pulleys in a single plane is suggested for avoiding cable interference while maximizing the workspace. The effects of using the retractable end-effector on the workspace were analyzed relative to the cable connection points’ location changes. Static stiffness analysis was conducted to examine the natural frequencies, and the geometric parameters of the end-effector were adjusted to improve the lowest natural frequencies. Simulation results show that a retractable beam-type end-effector can effectively expand the wrench-feasible workspace.


Sign in / Sign up

Export Citation Format

Share Document