Effect of HVOF Coatings on Abrasive Wear Behavior of Martensitic Stainless Steel

Author(s):  
Amar Patnaik ◽  
Sumit Rana ◽  
Sachin Tejyan
Wear ◽  
2017 ◽  
Vol 378-379 ◽  
pp. 96-105 ◽  
Author(s):  
Parinya Srisattayakul ◽  
Charnnarong Saikaew ◽  
Anurat Wisitsoraat ◽  
Ditsayut Phokharatkul

MRS Advances ◽  
2020 ◽  
Vol 5 (59-60) ◽  
pp. 3077-3089
Author(s):  
Alexeis Sánchez ◽  
Arnoldo Bedolla-Jacuinde ◽  
Francisco V. Guerra ◽  
I. Mejía

AbstractFrom the present study, vanadium additions up to 6.4% were added to a 14%Cr-3%C white iron, and the effect on the microstructure, hardness and abrasive wear were analysed. The experimental irons were melted in an open induction furnace and cast into sand moulds to obtain bars of 18, 25, and 37 mm thickness. The alloys were characterized by optical and electronic microscopy, and X-ray diffraction. Bulk hardness was measured in the as-cast conditions and after a destabilization heat treatment at 900°C for 45 min. Abrasive wear resistance tests were undertaken for the different irons according to the ASTM G65 standard in both as-cast and heat-treated conditions under a load of 60 N for 1500 m. The results show that, vanadium additions caused a decrease in the carbon content in the alloy and that some carbon is also consumed by forming primary vanadium carbides; thus, decreasing the eutectic M7C3 carbide volume fraction (CVF) from 30% for the base iron to 20% for the iron with 6.4%V;but overall CVF content (M7C3 + VC) is constant at 30%. Wear behaviour was better for the heat-treated alloys and mainly for the 6.4%V iron. Such a behaviour is discussed in terms of the CVF, the amount of vanadium carbides, the amount of martensite/austenite in matrix and the amount of secondary carbides precipitated during the destabilization heat treatment.


Wear ◽  
2009 ◽  
Vol 266 (9-10) ◽  
pp. 995-1002 ◽  
Author(s):  
K. Venkateswarlu ◽  
V. Rajinikanth ◽  
T. Naveen ◽  
Dhiraj Prasad Sinha ◽  
Atiquzzaman ◽  
...  

2015 ◽  
Vol 68 (5) ◽  
pp. 799-807 ◽  
Author(s):  
V. Chauhan ◽  
P. Dubey ◽  
S. Verma ◽  
R. Jayaganthan ◽  
R. Chandra

2020 ◽  
Vol 62 (7) ◽  
pp. 733-738 ◽  
Author(s):  
A. K. Gür ◽  
T. Yildiz ◽  
B. Icen

Abstract In this study, B4C and FeCrC powders were alloyed on the surface of AISI 430 by a fusion process via plasma transferred arc welding. Mixtures of these powders at various amounts were used. The microstructure and wear behavior of the obtained coating layers were investigated. The wear behavior of the coating layers was planned using the Taguchi method. Abrasive wear mass loss results were optimized with the “smaller the better” control characteristic of the Taguchi method, and the results were analyzed graphically. The actual data obtained at the end of the study were formed by using an L16 (4 × 2, 2 × 2) mixed array, and the remaining wear rates were calculated with the help of theoretical formulas in order to obtain theoretical abrasive wear results.


Sign in / Sign up

Export Citation Format

Share Document