Improvement in wind energy production through condition monitoring of wind turbine blades using vibration signatures and ARMA features: a data-driven approach

2019 ◽  
Vol 13 (3) ◽  
pp. 207 ◽  
Author(s):  
V. Sugumaran ◽  
A. Joshuva
2021 ◽  
Author(s):  
Alessio Castorrini ◽  
Paolo Venturini ◽  
Fabrizio Gerboni ◽  
Alessandro Corsini ◽  
Franco Rispoli

Abstract Rain erosion of wind turbine blades represents an interesting topic of study due to its non-negligible impact on annual energy production of the wind farms installed in rainy sites. A considerable amount of recent research works has been oriented to this subject, proposing rain erosion modelling, performance losses prediction, structural issues studies, etc. This work aims to present a new method to predict the damage on a wind turbine blade. The method is applied here to study the effect of different rain conditions and blade coating materials, on the damage produced by the rain over a representative section of a reference 5MW turbine blade operating in normal turbulence wind conditions.


2013 ◽  
Vol 380-384 ◽  
pp. 4336-4339
Author(s):  
Hua Xin ◽  
Chun Hua Zhang ◽  
Qing Guo Zhang ◽  
Ping Wang

Wind energy is an inexhaustible, an inexhaustible source of renewable and clean energy. Present due to the energy crisis and environmental protection and other issues, the use of wind more and more world attention. The wind turbine is the best form of wind energy conversion. Wind turbine wind turbine blades to capture wind energy is the core component of the blade in a natural environment to run directly in contact with air, with seagulls wings generate lift conditions are similar, so the gull wings airfoil and excellent conformation, with wind turbine blade design designed by combining the bionic blades. Through numerical simulation analysis found bionic blade aerodynamic performance than the standard blade aerodynamic performance has improved.


2013 ◽  
Vol 136 (1) ◽  
Author(s):  
Weijun Wang ◽  
Stéphane Caro ◽  
Fouad Bennis ◽  
Oscar Roberto Salinas Mejia

The aim of designing wind turbine blades is to improve the power capture ability. Since rotor control technology is currently limited to controlling rotational speed and blade pitch, an increasing concern has been given to morphing blades. In this paper, a simplified morphing blade is introduced, which has a linear twist distribution along the span and a shape that can be controlled by adjusting the twist of the blade's root and tip. To evaluate the performance of wind turbine blades, a numerical code based on the blade element momentum theory is developed and validated. The blade of the NREL Phase VI wind turbine is taken as a reference blade and has a fixed pitch. The optimization problems associated with the control of the morphing blade and a blade with pitch control are formulated. The optimal results show that the morphing blade gives better results than the blade with pitch control in terms of produced power. Under the assumption that at a given site, the annual average wind speed is known and the wind speed follows a Rayleigh distribution, the annual energy production of wind turbines was evaluated for three types of blade, namely, morphing blade, blade with pitch control and fixed pitch blade. For an annual average wind speed varying between 5 m/s and 15 m/s, it turns out that the annual energy production of the wind turbine containing morphing blades is 24.5% to 69.7% higher than the annual energy production of the wind turbine containing pitch fixed blades. Likewise, the annual energy production of the wind turbine containing blades with pitch control is 22.7% to 66.9% higher than the annual energy production of the wind turbine containing pitch fixed blades.


2019 ◽  
Author(s):  
Azadeh Tavousi Tabatabaei ◽  
Seyed Hossein Mamanpush

The demand for wind and other forms of clean energy is increasing in the US and throughout the world. Wind energy is also expected to provide 14.9% of the global electricity demand by 2020. Under this scenario, a significant amount of wind turbine blades (WTBs) will continue to burden our current landfills until a viable recycling strategy is found. Repurposing or recycling of end- of-use wind turbine blade material will provide both economic and environmental attributes.


Energies ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6750
Author(s):  
Valery Okulov ◽  
Ivan Kabardin ◽  
Dmitry Mukhin ◽  
Konstantin Stepanov ◽  
Nastasia Okulova

The review reflects physical solutions for de-icing, one of the main problems that impedes the efficient use of wind turbines for autonomous energy resources in cold regions. This topic is currently very relevant for ensuring the dynamic development of wind energy in the Arctic. The review discusses an effective anti-icing strategy for wind turbine blades, including various passive and active physical de-icing techniques using superhydrophobic coatings, thermal heaters, ultrasonic and vibration devices, operating control to determine the optimal methods and their combinations. After a brief description of the active methods, the energy consumption required for their realization is estimated. Passive methods do not involve extra costs, so the review focuses on the most promising solutions with superhydrophobic coatings. Among them, special attention is paid to plastic coatings with a lithographic method of applying micro and nanostructures. This review is of interest to researchers who develop new effective solutions for protection against icing, in particular, when choosing systems for protecting wind turbines.


Author(s):  
Sarim N. Al-Zubaidy ◽  
Jacqueline Bridge ◽  
Alwyn Johnson

Abstract In the past ten to fifteen years wind energy remerged on the world scene with a very healthy growth rate, it has outstripped photovoltaics (solar cells) as the world’s fastest growing energy source, with a growth rate in excess of 30 percent per annum. No longer just a “nice idea for the future” Wind energy is becoming a mainstream energy source for many countries. The proposed paper will present a procedure (using numerical methods) for the design and analysis of Horizontal Axis Wind Turbine (HAWT) rotors. To ascertain the accuracy and to determine where further improvements could be initiated; numerical findings were then compared with published experimental test data and the compression showed an average deviation of less than 3% and therefore the simplifying assumptions made for the prediction of fluid behavior over an airfoil section was justified. Once the approach was validated and standardised a comprehensive airfoil design was produced. A computational fluid dynamic code coupled with a simple numerical algorithm aided the inverse design procedure. The final design was well proportioned and was theoretically able to meet the stated objective function and satisfied all the imposed constraints (manufacturing and geometrical). The geometrical data was then generated in a form suitable for manufacture using manually and numerically controlled machines.


2019 ◽  
Vol 27 (8) ◽  
pp. 443-475 ◽  
Author(s):  
Arash Dashtkar ◽  
Homayoun Hadavinia ◽  
M Necip Sahinkaya ◽  
Neil A Williams ◽  
Samireh Vahid ◽  
...  

Wind blades are the most expensive parts of wind turbines made from fibre-reinforced polymer composites. The blades play a critical role on the energy production, but they are prone to damage like any other composite components. Leading edge (LE) erosion of the wind turbine blades is one of the common damages, causing a reduction in the annual energy production especially in offshore wind turbine farms. This erosion can be caused by rain, sand and flying solid particles. Coating the blade against erosion using appropriate materials can drastically reduce these losses and hence is of great interest. The sol–gel technique is a convenient method to manufacture thin film coatings, which can protect the blades against the rain erosion, while having negligible effect on the weight of the blades. This article provides an extensive review of the liquid erosion mechanism, water erosion testing procedures and the contributing factors to the erosion of the LE of wind turbine blades. Techniques for improving the erosion resistance of the LE using carbon nanotubes and graphene nano-additives are also discussed.


Kilat ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 309-319
Author(s):  
Wahirom - - ◽  
Nofirman - - ◽  
Prayudi -

In making a horizontal type wind turbine, of course, it is necessary to analyze it in depth, one of which is by predicting the production of wind energy produced by the wind turbine to estimate the wind power in the wind turbine which will later be applied. Wind energy sources that are commonly used are located in rural areas, fields and even there is such a large amount of energy that it is sometimes difficult to reach the power grid and other large areas including the roofs of high-rise buildings. There are many analytical models in wind energy estimation, one of which is often done by many researchers, namely by using the Weibull distribution method. From the measurement results that as many as 1516.37 kWh with a 1 kW wind turbine with a radius of 1 meter (capacity factor 30.09%). Modeling wind turbine blades with NACA 4412 using Qblade software to determine the torsional angle of the blade to be applied so that it is obtained that the torsion angle from the base and The tip of the blade has a tilt angle of 19.05◦ to 6.96° with a maximum Cp of 0.5 this is a pretty good value in designing wind turbine blades.


2019 ◽  
Vol 189 ◽  
pp. 25-34 ◽  
Author(s):  
Ahmet U. Dilek ◽  
Ali D. Oguz ◽  
Furkan Satis ◽  
Yigit D. Gokdel ◽  
Muammer Ozbek

Sign in / Sign up

Export Citation Format

Share Document