scholarly journals A Study of Progestin, Glucocorticoid Binding and Glycogen Content in Rat Endometrium before and after Implantation : Effect of Antiprogesterone RU-38486

1988 ◽  
Vol 64 (10) ◽  
pp. 1081-1087
Author(s):  
Toru TAKAHASHI ◽  
Hideki SAKAMOTO ◽  
Kaori OHTANI ◽  
Hideo SUZUKI ◽  
Konbai DEN ◽  
...  
2007 ◽  
Vol 192 (1) ◽  
pp. 67-73 ◽  
Author(s):  
K L Franko ◽  
D A Giussani ◽  
A J Forhead ◽  
A L Fowden

Fetal glucocorticoids have an important role in the pre-partum maturation of physiological systems essential for neonatal survival such as glucogenesis. Consequently, in clinical practice, synthetic glucocorticoids, like dexamethasone, are given routinely to pregnant women threatened with pre-term delivery to improve the viability of their infants. However, little is known about the effects of maternal dexamethasone treatment on the glucogenic capacity of either the fetus or mother. This study investigated the effects of dexamethasone treatment using a clinically relevant dose and regime on glycogen deposition and the activities of glucose-6-phosphatase (G6Pase) and phosphoenolpyruvate carboxykinase (PEPCK) in the liver and kidney of pregnant ewes and their fetuses, and of non-pregnant ewes. Dexamethasone administration increased the glycogen content of both the fetal and adult liver within 36 h of beginning treatment. It also increased G6Pase activity in the liver and kidney of the fetuses but not of their mothers or the non-pregnant ewes. Neither hepatic nor renal PEPCK activity was affected by dexamethasone in any group of animals. These changes in glycogen content and G6Pase activity were accompanied by rises in the plasma glucose and insulin concentrations and by a fall in the plasma cortisol level in the fetus and both groups of adult animals. In addition, dexamethasone treatment raised fetal plasma tri-iodothyronine (T3) concentrations and reduced maternal levels of plasma T3 and thyroxine, but had no effect on thyroid hormone concentrations in the non-pregnant ewes. These findings show that maternal dexamethasone treatment increases the glucogenic capacity of both the mother and fetus and has major implications for glucose availability both before and after birth.


2021 ◽  
Vol 17 (1) ◽  
Author(s):  
Sarah A. Tabozzi ◽  
Giovanni Stancari ◽  
Enrica Zucca ◽  
Michela Tajoli ◽  
Luca Stucchi ◽  
...  

AbstractBackgroundGlycogen in skeletal muscle is a major source of energy during exercise and an important determinant of endurance capacity, so that its measurement may provide a meaningful marker of athletes’ preparation and a possible predictor of performance, both in humans and in equines. Gold standard of glycogen concentration measurement is the histochemical and biochemical analysis of biopsy-derived muscle tissue, an invasive and potentially injuring procedure. Recently, high-frequency ultrasound (US) technology is being exploited in human sports medicine to estimate muscle glycogen content. Therefore, aim of the present study is to evaluate the feasibility of US assessment of muscle glycogen in equines.ResultsUS images ofgluteus medius(GL) andsemitendinosus(ST) muscles were obtained on eight healthy horses (3–10 years) before and after a steady-state exercise on treadmill (velocity: 4.0–12.5 m/s; duration: 2–20 min; heart rate: 137–218 b/min). Average image greyscale intensity was significantly different between GL and ST, both before and after exercise (p < 0.001). Comparing baseline and post-exercise US images, significant increase in greyscale intensity has been observed in ST (p < 0.001), but not in GL (p = 0.129). The volume of the exercise was significantly correlated with exercise-dependent change in image intensity (R2 = 0.891), consistent with a reduction of glycogen muscle stores resulting from aerobic activity.ConclusionsUS technique evidences also in horses muscle changes possibly associated to glycogen utilisation during exercise. Present results on a small sample need to be further confirmed and provide preliminary data warranting future validation by direct glycogen measurement through biopsy technique.


2020 ◽  
Vol 45 (11) ◽  
pp. 1287-1298 ◽  
Author(s):  
Mélina Bailly ◽  
Natacha Germain ◽  
Léonard Féasson ◽  
Frédéric Costes ◽  
Bruno Estour ◽  
...  

Constitutional thinness (CT) is a nonpathological state of underweight. The current study aimed to explore skeletal muscle energy storage in individuals with CT and to further characterize muscle phenotype at baseline and in response to overfeeding. Thirty subjects with CT (15 females, 15 males) and 31 normal-weight control subjects (16 females, 15 males) participated in the study. Histological and enzymological analyses were performed on muscle biopsy specimens before and after overfeeding. In the skeletal muscle of CT participants compared with controls, we observed a lower content of intramuscular triglycerides for type I (−17%, p < 0.01) and type IIA (−14%, p < 0.05) muscle fibers, a lower glycogen content for type I (−6%, p < 0.01) and type IIA (−5%, p < 0.05) muscle fibers, a specific fiber-type distribution, a marked muscle hypotrophy (−20%, p < 0.001), a low capillary-to-fiber ratio (−19%, p < 0.001), and low citrate synthase activity (−18%, p < 0.05). In response to overfeeding, CT participants increased their intramuscular triglycerides content in type I (+10%, p < 0.01) and type IIA (+9%, p < 0.01) muscle fibers. CT individuals seem to present an unusual muscle phenotype and different adaptations to overfeeding compared with normal-weight individuals, suggesting a specific energy metabolism and muscle adaptations. ClinicalTrials.gov registration no. NCT02004821. Novelty Low intramuscular triglycerides and glycogen content in skeletal muscle of constitutionally thin individuals. Low oxidative capacity, low capillary supply, and fiber hypotrophy in skeletal muscle of constitutionally thin individuals. Increase in intramuscular triglycerides in constitutional thinness in response to overfeeding.


1992 ◽  
Vol 262 (4) ◽  
pp. C975-C979 ◽  
Author(s):  
M. K. Spencer ◽  
Z. Yan ◽  
A. Katz

The effect of preexercise muscle glycogen content on the metabolic responses to exercise has been investigated. Seven men cycled at a work load calculated to elicit 75% of maximal oxygen uptake [211 +/- 17 (SE) W] on two occasions: 1) to fatigue (37.2 +/- 5.3 min) and 2) at the same work load and for the same duration as the first. Biopsies were obtained from the quadriceps femoris muscle before and after exercise. Before the first experiment, muscle glycogen was lowered by exercise and diet, and before the second experiment, muscle glycogen was elevated. In the low-glycogen condition (LG), muscle glycogen decreased from 182 +/- 15 at rest to 7 +/- 4 mmol glucosyl units/kg dry wt at fatigue, while in the high-glycogen condition (HG), glycogen decreased from 725 +/- 31 at rest to 353 +/- 53 mmol glucosyl units/kg dry wt at the end of exercise. Hexose monophosphates were not increased after LG exercise but increased approximately fivefold after HG exercise. Lactate increased more during HG exercise (LG = 16 +/- 5, HG = 61 +/- 7 mmol/kg dry wt; P less than or equal to 0.001), whereas IMP increased more during LG (LG = 2.8 +/- 0.6, HG = 0.9 +/- 0.2 mmol/kg dry wt; P less than or equal to 0.05). The increases in the sum of tricarboxylic acid cycle intermediates (TCAI; citrate+malate+fumarate) and acetylcarnitine (which is in equilibrium with acetyl CoA) were significantly greater during HG exercise (P less than or equal to 0.05).(ABSTRACT TRUNCATED AT 250 WORDS)


Author(s):  
J. Temple Black

Tool materials used in ultramicrotomy are glass, developed by Latta and Hartmann (1) and diamond, introduced by Fernandez-Moran (2). While diamonds produce more good sections per knife edge than glass, they are expensive; require careful mounting and handling; and are time consuming to clean before and after usage, purchase from vendors (3-6 months waiting time), and regrind. Glass offers an easily accessible, inexpensive material ($0.04 per knife) with very high compressive strength (3) that can be employed in microtomy of metals (4) as well as biological materials. When the orthogonal machining process is being studied, glass offers additional advantages. Sections of metal or plastic can be dried down on the rake face, coated with Au-Pd, and examined directly in the SEM with no additional handling (5). Figure 1 shows aluminum chips microtomed with a 75° glass knife at a cutting speed of 1 mm/sec with a depth of cut of 1000 Å lying on the rake face of the knife.


Author(s):  
R. F. Bils ◽  
W. F. Diller ◽  
F. Huth

Phosgene still plays an important role as a toxic substance in the chemical industry. Thiess (1968) recently reported observations on numerous cases of phosgene poisoning. A serious difficulty in the clinical handling of phosgene poisoning cases is a relatively long latent period, up to 12 hours, with no obvious signs of severity. At about 12 hours heavy lung edema appears suddenly, however changes can be seen in routine X-rays taken after only a few hours' exposure (Diller et al., 1969). This study was undertaken to correlate these early changes seen by the roengenologist with morphological alterations in the lungs seen in the'light and electron microscopes.Forty-two adult male and female Beagle dogs were selected for these exposure experiments. Treated animals were exposed to 94.5-107-5 ppm phosgene for 10 min. in a 15 m3 chamber. Roentgenograms were made of the thorax of each animal before and after exposure, up to 24 hrs.


Sign in / Sign up

Export Citation Format

Share Document