3. The flame-retardation mechanism of organic phosphorus flame retardants

2008 ◽  
Vol 5 (1) ◽  
pp. 131-136
Author(s):  
Baghdad Science Journal

In this investigation , borax (B) (additive I) and chlorinated paraffin (CP.) (additive II) ,were used as flame retardants for each of epoxy and unsaturated polyester resins in the weight ratios of 2,4,6, & 8% by preparing films of (130×130×3) mm dimensions. Also films of these resins with a mixture of [50%(B.)+50%(CP.)] (additive III) in the same weight ratios were prepared in order to study the synergistic effect of these additives on the flammability of the two resins . Three standard test methods were used to measure the flame retardation which are : 1-ASTM : D-2863 2-ASTM : D-635 3-ASTM : D-3014 The results obtained from these tests indicated that the additives (B),(CP.) and their mixture , gave a good effect as flame retardants for each epoxy and unsaturated polyester resins , but their synergistic effect was more effective than each of them alone. Finally , the compatibility between the additives and resins (which showed a clear effect on retardation) was also studied .


Materials ◽  
2020 ◽  
Vol 13 (22) ◽  
pp. 5253
Author(s):  
Anna Sienkiewicz ◽  
Piotr Czub

Due to the thermal and fire sensitivity of polymer bio-composite materials, especially in the case of plant-based fillers applied for them, next to intensive research on the better mechanical performance of composites, it is extremely important to improve their reaction to fire. This is necessary due to the current widespread practical use of bio-based composites. The first part of this work relates to an overview of the most commonly used techniques and different approaches towards the increasing the fire resistance of petrochemical-based polymeric materials. The next few sections present commonly used methods of reducing the flammability of polymers and characterize the most frequently used compounds. It is highlighted that despite adverse health effects in animals and humans, some of mentioned fire retardants (such as halogenated organic derivatives e.g., hexabromocyclododecane, polybrominated diphenyl ether) are unfortunately also still in use, even for bio-composite materials. The most recent studies related to the development of the flame retardation of polymeric materials are then summarized. Particular attention is paid to the issue of flame retardation of bio-based polymer composites and the specifics of reducing the flammability of these materials. Strategies for retarding composites are discussed on examples of particular bio-polymers (such as: polylactide, polyhydroxyalkanoates or polyamide-11), as well as polymers obtained on the basis of natural raw materials (e.g., bio-based polyurethanes or bio-based epoxies). The advantages and disadvantages of these strategies, as well as the flame retardants used in them, are highlighted.


2015 ◽  
Vol 1096 ◽  
pp. 429-434 ◽  
Author(s):  
Jin Ying Pang ◽  
Xian Zhong Mo ◽  
Yu Xin Liu ◽  
Yong Fei Zhu

Flame retardation of banana fiber reinforced epoxy composites using melamine pyrophosphate and pentaerythritol as intumescent flame retardants and the influence of mechanical properties were investigated. The effects of IFR contents and the ratio of MPP and PER on limiting oxygen index (LOI) and UL94 rating of banana fiber reinforced epoxy composites has been studied. It was found that the combustion performance of the composites increases with increasing IFR contents,and the composites at the ratio of MPP/PER=2:1(weight ratio) at the same loading 40% showed the best combustion performance with IFR contents increasing,the limiting oxygen index (LOI) increased and UL94 rating reached, but the mechanical properties of composites significantly decreased. In order to increase the comprehensive properties, the flame retarded fiber was used to prepared the composites,the limiting oxygen index (LOI) of the composites significantly increased. the best complex properties were the IFR contents was 40%, the ratio of MPP/PER=2:1 (weight ratio), by the spraying method with 20g the fire retardant liquid of every 30g banana fiber.


Polymers ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 429 ◽  
Author(s):  
Le Wan ◽  
Cong Deng ◽  
Ze-Yong Zhao ◽  
Hong Chen ◽  
Yu-Zhong Wang

Natural rubber (NR) as a kind of commercial polymer or engineering elastomer is widely used in tires, dampers, suspension elements, etc., because of its unique overall performance. For some NR products, their work environment is extremely harsh, facing a serious fire safety challenge. Accordingly, it is important and necessary to endow NR with flame retardancy via different strategies. Until now, different methods have been used to improve the flame retardancy of NR, mainly including intrinsic flame retardation through the incorporation of some flame-retarding units into polymer chains and additive-type flame retardation via adding some halogen or halogen-free flame retardants into NR matrix. For them, the synergistic flame-retarding action is usually applied to simultaneously enhance flame retardancy and mechanical properties, in which some synergistic flame retardants such as organo-montmorillonite (OMMT), carbon materials, halloysite nanotube (HNT), etc., are utilized to achieve the above-mentioned aim. The used flame-retarding units in polymer chains for intrinsic flame retardation mainly include phosphorus-containing small molecules, an unsaturated chemical bonds-containing structure, a cross-linking structure, etc.; flame retardants in additive-type flame retardation contain organic and inorganic flame retardants, such as magnesium hydroxide, aluminum hydroxide, ammonium polyphosphate, and so on. Concerning the flame retardation of NR, great progress has been made in the past work. To achieve the comprehensive understanding for the strategy and recent progress in the flame retardation of NR, we thoroughly analyze and discuss the past and current flame-retardant strategies and the obtained progress in the flame-retarding NR field in this review, and a brief prospect for the flame retardation of NR is also presented.


Sign in / Sign up

Export Citation Format

Share Document