5. Additive manufacturing for patient-specific medical use

Mathematics ◽  
2021 ◽  
Vol 9 (15) ◽  
pp. 1746
Author(s):  
Iñigo Calderon-Uriszar-Aldaca ◽  
Sergio Perez ◽  
Ravi Sinha ◽  
Maria Camara-Torres ◽  
Sara Villanueva ◽  
...  

Additive manufacturing (AM) of scaffolds enables the fabrication of customized patient-specific implants for tissue regeneration. Scaffold customization does not involve only the macroscale shape of the final implant, but also their microscopic pore geometry and material properties, which are dependent on optimizable topology. A good match between the experimental data of AM scaffolds and the models is obtained when there is just a few millimetres at least in one direction. Here, we describe a methodology to perform finite element modelling on AM scaffolds for bone tissue regeneration with clinically relevant dimensions (i.e., volume > 1 cm3). The simulation used an equivalent cubic eight node finite elements mesh, and the materials properties were derived both empirically and numerically, from bulk material direct testing and simulated tests on scaffolds. The experimental validation was performed using poly(ethylene oxide terephthalate)-poly(butylene terephthalate) (PEOT/PBT) copolymers and 45 wt% nano hydroxyapatite fillers composites. By applying this methodology on three separate scaffold architectures with volumes larger than 1 cm3, the simulations overestimated the scaffold performance, resulting in 150–290% stiffer than average values obtained in the validation tests. The results mismatch highlighted the relevance of the lack of printing accuracy that is characteristic of the additive manufacturing process. Accordingly, a sensitivity analysis was performed on nine detected uncertainty sources, studying their influence. After the definition of acceptable execution tolerances and reliability levels, a design factor was defined to calibrate the methodology under expectable and conservative scenarios.


Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 830
Author(s):  
Sina Rößler ◽  
Andreas Brückner ◽  
Iris Kruppke ◽  
Hans-Peter Wiesmann ◽  
Thomas Hanke ◽  
...  

Today, materials designed for bone regeneration are requested to be degradable and resorbable, bioactive, porous, and osteoconductive, as well as to be an active player in the bone-remodeling process. Multiphasic silica/collagen Xerogels were shown, earlier, to meet these requirements. The aim of the present study was to use these excellent material properties of silica/collagen Xerogels and to process them by additive manufacturing, in this case 3D plotting, to generate implants matching patient specific shapes of fractures or lesions. The concept is to have Xerogel granules as active major components embedded, to a large proportion, in a matrix that binds the granules in the scaffold. By using viscoelastic alginate as matrix, pastes of Xerogel granules were processed via 3D plotting. Moreover, alginate concentration was shown to be the key to a high content of irregularly shaped Xerogel granules embedded in a minimum of matrix phase. Both the alginate matrix and Xerogel granules were also shown to influence viscoelastic behavior of the paste, as well as the dimensionally stability of the scaffolds. In conclusion, 3D plotting of Xerogel granules was successfully established by using viscoelastic properties of alginate as matrix phase.


2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Dafydd O. Visscher ◽  
Maureen van Eijnatten ◽  
Niels P. T. J. Liberton ◽  
Jan Wolff ◽  
Mark B. M. Hofman ◽  
...  

Author(s):  
Bradley Hanks ◽  
Shantanab Dinda ◽  
Sanjay Joshi

Total hip arthroplasty (THA) is an increasingly common procedure that replaces all or part of the hip joint. The average age of patients is decreasing, which in turn increases the need for more durable implants. Revisions in hip implants are frequently caused by three primary issues: femoral loading, poor fixation, and stress shielding. First, as the age of hip implant patients decreases, the hip implants are seeing increased loading, beyond what they were traditionally designed for. Second, traditional implants may have roughened surfaces but are not fully porous which would allow bone to grow in and through the implant. Third, traditional implants are too stiff, causing more load to be carried by the implant and shielding the bone from stress. Ultimately this stress shielding leads to bone resorption and implant loosening. Additive manufacturing (AM) presents a unique opportunity for enhanced performance by allowing for personalized medicine and increased functionality through geometrically complex parts. Much research has been devoted to how AM can be used to improve surgical implants through lattice structures. To date, the authors have found no studies that have performed a complete 3D lattice structure optimization in patient specific anatomy. This paper discusses the general design of an AM hip implant that is personalized for patient specific anatomy and proposes a workflow for optimizing a lattice structure within the implant. Using this design workflow, several lattice structured AM hip implants of various unit cell types are optimized. A solid hip implant is compared against the optimized hip implants. It appears the AM hip implant with a tetra lattice outperforms the other implant by reducing stiffness and allowing for greater bone ingrowth. Ultimately it was found that AM software still has many limitations associated with attempting complex optimizations with multiple materials in patient specific anatomy. Though software limitations prevented a full 3D optimization in patient specific anatomy, the challenges associated such an approach and limitations of the current software are discussed.


Author(s):  
Lakshya P. Rathore ◽  
Naina Verma

Additive manufacturing (AM) is a novel technique that despite having been around for more than 35 years, has been underutilized. Its great advantage lies in the basic fact that it is incredibly customizable. Since its use was recognized in various fields of medicine like orthopaedics, otorhinolaryngology, ophthalmology etc, it has proved to be one of the most promising developments in most of them. Customizable orthotics, prosthetics and patient specific implants and tracheal splints are few of its advantages. And in the future too, the combination of tissue engineering with AM is believed to produce an immense change in biological tissue replacement.


2021 ◽  
Author(s):  
Raphael Bertani ◽  
Caio Moreno Perret Novo ◽  
Pedro Henrique Freitas ◽  
Amanda Amorin Nunes ◽  
Thiago Nunes Palhares ◽  
...  

Abstract We present a detailed step-by-step approach for the low-cost production and surgical implantation of cranial prostheses, aimed at restoring aesthetics, cerebral protection, and facilitating neurological rehabilitation. This protocol uses combined scan computed tomography (CT) cross-sectional images, in DICOM format, along with a 3D printing (additive manufacturing) setup. The in-house developed software InVesalius®️ is an open-source tool for medical imaging manipulation. The protocol describes image acquisition (CT scanning) procedures, and image post-processing procedures such as image segmentation, surface/volume rendering, mesh generation of a 3D digital model of the cranial defect and the desired prostheses, and their preparation for use in 3D printers. Furthermore, the protocol describes a detailed powder bed fusion additive manufacturing process, known as Selective Laser Sintering (SLS), using Polyamide (PA12) as feedstock to produce a 3-piece customized printed set per patient. Each set consists of a “cranial defect printout” and a “testing prosthesis” to assemble parts for precision testing, and a cranial “prostheses mold” in 2 parts to allow for the intraoperative modeling of the final implant cast using the medical grade Poly(methyl methacrylate) (PMMA) in a time span of a few min. The entire 3D processing time, including modelling, design, production, post-processing and qualification, takes approximately 42 h. Modeling the PMMA flap with a critical thickness of 4 mm by means of Finite Element Method (FEM) assures mechanical and impact properties to be slightly weaker than the bone tissue around it, a safety design to prevent fracturing the skull after a possible subsequent episode of head injury. On a parallel track, the Protocol seeks to provide guidance in the context of equipment, manufacturing cost and troubleshooting. Customized 3D PMMA prostheses offers a reduced operating time, good biocompatibility, and great functional and aesthetic outcomes. Additionally, it offers greater than 15-fold cost advantage over the usage of other materials, including metallic parts produced by additive manufacturing.


2019 ◽  
Vol 109 (2) ◽  
pp. 166-173 ◽  
Author(s):  
A.B.V. Pettersson ◽  
M. Salmi ◽  
P. Vallittu ◽  
W. Serlo ◽  
J. Tuomi ◽  
...  

Background and Aims: Additive manufacturing or three-dimensional printing is a novel production methodology for producing patient-specific models, medical aids, tools, and implants. However, the clinical impact of this technology is unknown. In this study, we sought to characterize the clinical adoption of medical additive manufacturing in Finland in 2016–2017. We focused on non-dental usage at university hospitals. Materials and Methods: A questionnaire containing five questions was sent by email to all operative, radiologic, and oncologic departments of all university hospitals in Finland. Respondents who reported extensive use of medical additive manufacturing were contacted with additional, personalized questions. Results: Of the 115 questionnaires sent, 58 received answers. Of the responders, 41% identified as non-users, including all general/gastrointestinal (GI) and vascular surgeons, urologists, and gynecologists; 23% identified as experimenters or previous users; and 36% identified as heavy users. Usage was concentrated around the head area by various specialties (neurosurgical, craniomaxillofacial, ear, nose and throat diseases (ENT), plastic surgery). Applications included repair of cranial vault defects and malformations, surgical oncology, trauma, and cleft palate reconstruction. Some routine usage was also reported in orthopedics. In addition to these patient-specific uses, we identified several off-the-shelf medical components that were produced by additive manufacturing, while some important patient-specific components were produced by traditional methodologies such as milling. Conclusion: During 2016–2017, medical additive manufacturing in Finland was routinely used at university hospitals for several applications in the head area. Outside of this area, usage was much less common. Future research should include all patient-specific products created by a computer-aided design/manufacture workflow from imaging data, instead of concentrating on the production methodology.


2020 ◽  
Vol 15 (2) ◽  
Author(s):  
Michael Seebach ◽  
Christian Fritz ◽  
Johanna Kerschreiter ◽  
Michael Friedrich Zaeh

Abstract Powder-based additive manufacturing technologies such as powder bed fusion (PBF) using a laser beam (PBF-LB) and PBF using an electron beam (PBF-EB) allow the manufacturing of complex, patient-specific implants from titanium alloys at appropriate manufacturing expenses and thus production cost. To meet medical quality requirements, mechanical post-treatment (e.g., grinding and polishing) is often required. However, different medical applications require specific quality characteristics. It is therefore necessary to assess the fulfillment of the requirements for each case individually with regard to the manufacturing technologies. This study investigated the potential of the two mentioned additive manufacturing technologies for manufacturing patient-specific, topology-optimized bone plates that are used for osteosynthesis (the joining of bone segments) in the reconstruction of the mandible (lower jaw). Identical individualized implants were manufactured and subsequently treated with established industrial processes and examined according to medical quality requirements. Crucial quality requirements for this medical application are the shape accuracy (for exact bone positioning and even load transmission) as well as the surface quality (to enhance fatigue strength and prevent bone ingrowth in view of the subsequent easy removal of the plates). The machining of the implants is shown in comparison to distinguish the two manufacturing processes from established procedures.


2019 ◽  
Vol 18 ◽  
pp. 153303381987020 ◽  
Author(s):  
Rance Tino ◽  
Adam Yeo ◽  
Martin Leary ◽  
Milan Brandt ◽  
Tomas Kron

Introduction: Additive manufacturing or 3-dimensional printing has become a widespread technology with many applications in medicine. We have conducted a systematic review of its application in radiation oncology with a particular emphasis on the creation of phantoms for image quality assessment and radiation dosimetry. Traditionally used phantoms for quality assurance in radiotherapy are often constraint by simplified geometry and homogenous nature to perform imaging analysis or pretreatment dosimetric verification. Such phantoms are limited due to their ability in only representing the average human body, not only in proportion and radiation properties but also do not accommodate pathological features. These limiting factors restrict the patient-specific quality assurance process to verify image-guided positioning accuracy and/or dose accuracy in “water-like” condition. Methods and Results: English speaking manuscripts published since 2008 were searched in 5 databases (Google Scholar, Scopus, PubMed, IEEE Xplore, and Web of Science). A significant increase in publications over the 10 years was observed with imaging and dosimetry phantoms about the same total number (52 vs 50). Key features of additive manufacturing are the customization with creation of realistic pathology as well as the ability to vary density and as such contrast. Commonly used printing materials, such as polylactic acid, acrylonitrile butadiene styrene, high-impact polystyrene and many more, are utilized to achieve a wide range of achievable X-ray attenuation values from −1000 HU to 500 HU and higher. Not surprisingly, multimaterial printing using the polymer jetting technology is emerging as an important printing process with its ability to create heterogeneous phantoms for dosimetry in radiotherapy. Conclusion: Given the flexibility and increasing availability and low cost of additive manufacturing, it can be expected that its applications for radiation medicine will continue to increase.


Sign in / Sign up

Export Citation Format

Share Document