1 In situ tools for the exploration of structure–property relationships

Author(s):  
Claudia Weidenthaler
1998 ◽  
Vol 18 (1-2) ◽  
pp. 17-30 ◽  
Author(s):  
D.S. Lee ◽  
J.K. Doo ◽  
B. Kim ◽  
J. Kim

Abstract Structure-property relationships of poly(butylene terephthalate) (PBT) / polyolefin (PO) (80/20) blends modified by a reactive compatibilizer, ethylene-acrylic ester-glycidyl methacrylate terpolymer (BAG), were investigated as part of studies on toughening of PBT. POs used for the study were ethylene propylene rubber (EPR), low-density polyethylene (LDPE), and high-density polyethylene (HDPE), whose deformabilities were different at room temperature. It was observed that the particle size of PO in the discrete phase was the smallest when the EAG content was 8~12 wL%. Shear viscosity of the blends increased as the particle size was decreased. It seems that the morphology and rheological properties of the blends were affected by graft copolymers formed in situ from EAG and PBT during melt mixing. Brittle-tough transition of impact strength of the PBT/EPR/EAG blends was observed when the EAG content was increased from 0 to 4 wt% at room temperature. However, blends of PBT/LDPE/EAG and PBT/HDPE/EAG showed brittle-tough transition with increasing the EAG content from 8 wt% to 12 wt%. It is postulated that toughening of the PBT depends on the deformability of the discrete PO particle as well as its size.


2015 ◽  
Vol 177 ◽  
pp. 249-262 ◽  
Author(s):  
Z. Y. Tian ◽  
H. Vieker ◽  
P. Mountapmbeme Kouotou ◽  
A. Beyer

In situ emission and absorption FTIR methods were employed to characterize the spatially resolved structure of binary Co–Cu oxides for low-temperature oxidation of CO and propene. Co–Cu oxide catalysts were controllably synthesized by pulsed-spray evaporation chemical vapor deposition. XRD, FTIR, XPS, UV-vis and helium ion microscopy (HIM) were employed to characterize the as-prepared thin films in terms of structure, composition, optical and thermal properties as well as morphology. In situ emission FTIR spectroscopy indicates that Co3O4, CuCo2O4 and CuO are thermally stable at 650, 655 and 450 °C, respectively. The catalytic tests with absorption FTIR display that the involvement of Co–Cu oxides can initiate CO and C3H6 oxidation at lower temperatures. The results indicate that in situ emission and absorption FTIR are useful techniques to explore the thermal properties and catalytic performance of functional materials, allowing many potential applications in tailoring their temporally and spatially resolved structure-property relationships.


Soft Matter ◽  
2014 ◽  
Vol 10 (27) ◽  
pp. 4990-5002 ◽  
Author(s):  
Alina K. Higham ◽  
Christopher A. Bonino ◽  
Srinivasa R. Raghavan ◽  
Saad A. Khan

In siturheological techniques are used to characterize and investigate the structure–property relationships for a two-step photoinitiated alginate crosslinking system.


2011 ◽  
Vol 44 (6) ◽  
pp. 1297-1299 ◽  
Author(s):  
Brian R. Pauw ◽  
Martin E. Vigild ◽  
Kell Mortensen ◽  
Jens W. Andreasen ◽  
Enno A. Klop

Determining the effects of stress on the internal structure of high-performance fibres may provide insight into their structure–property relationships. The deformation of voids inside a poly(p-phenylene terephthalamide) (PPTA) fibre upon application of stress is one such effect which may be observed usingin situsmall-angle X-ray scattering. For this purpose, a compact in-vacuum stretching device is described here, capable of applying a force of up to 500 N using specially designed fibre clamps. Furthermore, a small radiative heater is placed around the fibre at the measurement position, so that the effects of the application of heat during tensile load can also be determined. Initial results show a slight but significant effect of stress and heating on the internal void structure of PPTA fibres. The effects on the void structure of heating and stress appear to be markedly different.


2020 ◽  
Author(s):  
◽  
Taheg Hajilounezhad

This work is aimed to explore process-structure-property relationships of carbon nanotube (CNT) forests. CNTs have superior mechanical, electrical and thermal properties that make them suitable for many applications. Yet, due to lack of manufacturing control, there is a huge performance gap between promising properties of individual CNTs and CNT forest properties that hinders their adoption into potential industrial applications. In this research, computational modelling, in-situ electron microscopy for CNT synthesis, and data-driven and high-throughput deep convolutional neural networks are employed to not only accelerate implementing CNTs in various applications but also to establish a framework to make validated predictive models that can be easily extended to achieve application-tailored synthesis of any materials. A time-resolved and physics-based finite-element simulation tool is modelled in MATLAB to investigate synthesis of CNT forests, specially to study the CNT-CNT interactions and generated mechanical forces and their role in ensemble structure and properties. A companion numerical model with similar construct is then employed to examine forest mechanical properties in compression. In addition, in-situ experiments are carried out inside Environmental Scanning Electron Microscope (ESEM) to nucleate and synthesize CNTs. Findings may primarily be used to expand the forest growth and self-assembly knowledge and to validate the assumptions of simulation package. Also, SEM images can be used as feed database to construct a deep learning model to grow CNTs by design. The chemical vapor deposition parameter space of CNT synthesis is so vast that it is not possible to investigate all conceivable combinations in terms of time and costs. Hence, simulated CNT forest morphology images are used to train machine learning and learning algorithms that are able to predict CNT synthesis conditions based on desired properties. Exceptionally high prediction accuracies of R2 > 0.94 is achieved for buckling load and stiffness, as well as accuracies of > 0.91 for the classification task. This high classification accuracy promotes discovering the CNT forest synthesis-structure relationships so that their promising performance can be adopted in real world applications. We foresee this work as a meaningful step towards creating an unsupervised simulation using machine learning techniques that can seek out the desired CNT forest synthesis parameters to achieve desired property sets for diverse applications.


Sign in / Sign up

Export Citation Format

Share Document