scholarly journals Molecular Characterization Of Autochtonus Slavonian Syrmian Podolian Cattle

2015 ◽  
Vol 65 (1) ◽  
pp. 89-98 ◽  
Author(s):  
KEROS Tomislav ◽  
JEMERŠIĆ Lorena ◽  
PRPIĆ Jelena ◽  
BRNIĆ Dragan

Abstract The aim of the study is to increase the knowledge on the genetic structure status of the autochthonous Slavonian Syrmian Podolian cattle breed currently listed by the FAO as “critically endangered”. Blood samples obtained from a total of 20 randomly selected individua were included in genotyping upon microsatellite panel recommended by ISAG and FAO. The procedure enabled the identification of as many as 214 (96.34%) genotypes and, at the same time, 129 allelic variations were found with = 11.73 alleles per locus. The genotypes showed differences between the microsatellite loci and also significant differences (p<0.05) in the frequency of both homozygosity and heterozygosity. The analyses of the allelic distribution within microsatellite loci showed marked variability. The distribution of genetic relationship was expressed by Wright's F coefficients. A moderate level of genetic diversity was observed at the tested loci. The findings demonstrate the degree of breed relationship and breed purity but also indicate that gene pool of the tested population has been threatened. Therefore, urgent measures must be taken to support both the genetic consolidation and preservation of the remaining population of Slavonian Syrmian Podolian cattle in Croatia.

2017 ◽  
Vol 60 (2) ◽  
pp. 153-160 ◽  
Author(s):  
Bayrem Jemmali ◽  
Mohamed Mezir Haddad ◽  
Nawel Barhoumi ◽  
Syrine Tounsi ◽  
Faten Lasfer ◽  
...  

Abstract. This study aimed at screening genetic diversity and differentiation in four horse breeds raised in Tunisia, the Barb, Arab-Barb, Arabian, and English Thoroughbred breeds. A total of 200 blood samples (50 for each breed) were collected from the jugular veins of animals, and genomic DNA was extracted. The analysis of the genetic structure was carried out using a panel of 16 microsatellite loci. Results showed that all studied microsatellite markers were highly polymorphic in all breeds. Overall, a total of 147 alleles were detected using the 16 microsatellite loci. The average number of alleles per locus was 7.52 (0.49), 7.35 (0.54), 6.3 (0.44), and 6 (0.38) for the Arab-Barb, Barb, Arabian, and English Thoroughbred breeds, respectively. The observed heterozygosities ranged from 0.63 (0.03) in the English Thoroughbred to 0.72 in the Arab-Barb breeds, whereas the expected heterozygosities were between 0.68 (0.02) in the English Thoroughbred and 0.73 in the Barb breeds. All FST values calculated by pairwise breed combinations were significantly different from zero (p  <  0.05) and an important genetic differentiation among breeds was revealed. Genetic distances, the factorial correspondence, and principal coordinate analyses showed that the important amount of genetic variation was within population. These results may facilitate conservation programs for the studied breeds and enhance preserve their genetic diversity.


1999 ◽  
Vol 65 (4) ◽  
pp. 520-526 ◽  
Author(s):  
Uthairat Na-Nakorn ◽  
Nobuhiko Taniguchi ◽  
Estu Nugroho ◽  
Shingo Seki ◽  
Wongpathom Kamonrat

2009 ◽  
Vol 59 (2) ◽  
pp. 169-187 ◽  
Author(s):  
Michal Kozakiewicz ◽  
Alicja Gryczyńska–Siemiątkowska ◽  
Hanna Panagiotopoulou ◽  
Anna Kozakiewicz ◽  
Robert Rutkowski ◽  
...  

AbstractHabitat barriers are considered to be an important factor causing the local reduction of genetic diversity by dividing a population into smaller sections and preventing gene flow between them. However, the “barrier effect” might be different in the case of different species. The effect of geographic distance and water barriers on the genetic structure of populations of two common rodent species – the yellow-necked mouse (Apodemus flavicollis) and the bank vole (Myodes glareolus) living in the area of a lake (on its islands and on two opposite shores) was investigated with the use of microsatellite fragment analysis. The two studied species are characterised by similar habitat requirements, but differ with regard to the socio-spatial structure of the population, individual mobility, capability to cross environmental barriers, and other factors. Trapping was performed for two years in spring and autumn in north-eastern Poland (21°E, 53°N). A total of 160 yellow-necked mouse individuals (7 microsatellite loci) and 346 bank vole individuals (9 microsatellite loci) were analysed. The results of the differentiation analyses (FST and RST) have shown that both the barrier which is formed by a ca. 300 m wide belt of water (between the island and the mainland) and the actual distance of approximately 10 km in continuous populations are sufficient to create genetic differentiation within both species. The differences between local populations living on opposite lake shores are the smallest; differences between any one of them and the island populations are more distinct. All of the genetic diversity indices (the mean number of alleles, mean allelic richness, as well as the observed and expected heterozygosity) of the local populations from the lakeshores were significantly higher than of the small island populations of these two species separated by the water barrier. The more profound “isolation effect” in the case of the island populations of the bank vole, in comparison to the yellow-necked mouse populations, seems to result not only from the lower mobility of the bank vole species, but may also be attributed to other differences in the animals' behaviour.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e10327
Author(s):  
Ricardo M. Landínez-García ◽  
Juan Carlos Narváez ◽  
Edna J. Márquez

Prochilodus magdalenae is a freshwater fish endemic to the Colombian Magdalena-Cauca and Caribbean hydrographic basins. The genetic structure patterns of populations of different members of Prochilodus and the historic restocking of its depleted natural populations suggest that P. magdalenae exhibits genetic stocks that coexist and co-migrate throughout the rivers Magdalena, Cauca, Cesar, Sinú and Atrato. To test this hypothesis and explore the levels of genetic diversity and population demography of 725 samples of P. magdalenae from the studied rivers, we developed a set of 11 species-specific microsatellite loci using next-generation sequencing, bioinformatics, and experimental tests of the levels of diversity of the microsatellite loci. The results evidenced that P. magdalenae exhibits high genetic diversity, significant inbreeding coefficient ranging from 0.162 to 0.202, and signs of erosion of the genetic pool. Additionally, the population genetic structure constitutes a mixture of genetic stocks heterogeneously distributed along the studied rivers, and moreover, a highly divergent genetic stock was detected in Chucurí, Puerto Berrío and Palagua that may result from restocking practices. This study provides molecular tools and a wide framework regarding the genetic diversity and structure of P. magdalenae, which is crucial to complement its baseline information, diagnosis and monitoring of populations, and to support the implementation of adequate regulation, management, and conservation policies.


Author(s):  
A. S. Kramarenko

The Southern Meat cattle is a composite breed developed by crossing Cuban zebu (Bos indicus) with different cattle breeds (Bos taurus) – local the Red Steppe, Hereford, Charolais, Santa Gertrudis, Dairy Shorthorn. Genetic structure of the Southern meat cattle breed from the State Enterprise Experimental Farm “Askaniyske” NAAS Ukraine (Kherson region) were investigated based on the microsatellite DNA loci. Analysis included 192 animals. A panel of 12 bovine-specific microsatellite markers (TGLA227, BM2113, TGLA53, ETH10, SPS115, TGLA122, INRA23, TGLA126, BM1818, ETH3, ETH225 and BM1824), recommended of the ISAG for cattle genetic diversity studies, was selected for genetic characterization and revealing the extent of genetic diversity in the Southern Meat cattle breed. Genomic DNA was extracted from tissue samples using Nexttec column (Nexttec Biotechnology GmbH, Germany) following the manufacturer's instructions. All laboratory tests were conducted in the laboratory of Molecular Genetics, Animal Center of Biotechnology and Molecular Diagnostics, All-Russian Research Institute for Animal Husbandry named after academy member L.K. Ernst. We report the distribution and the frequency of a taurine and an indicine specific alleles in the Southern Meat cattle breed using literature data about the Zebu and different cattle breeds genetic structure based on microsatellite loci from our list. It can be assumed that the TGLA22777, BM2113141-143, ETH10209-211, TGLA122149, INRA23194-198, TGLA126123, ETH225156-158-160 alleles among the Southern Meat cattle breed examined individuals were inherited from a B. indicus ancestor. On the other hand, the TGLA53156, ETH10217-219, TGLA122143, INRA23202, TGLA126115, ETH225148-150, BM1824188-190 alleles in the Southern Meat cattle gene pool may be inherited from a B. taurus ancestor (i.e., taurine breeds diagnostic alleles).


HortScience ◽  
2010 ◽  
Vol 45 (2) ◽  
pp. 314-315 ◽  
Author(s):  
Hai-fei Yan ◽  
Xue-jun Ge ◽  
Chi-ming Hu ◽  
Gang Hao

Nine microsatellite loci were isolated from Primula obconica using the FIASCO protocol. We used 30 individuals from three populations for the assessment of microsatellite variation. Seven loci were detected with microsatellite polymorphism. The number of alleles per locus ranged from three to seven. The average observed heterozygosity and expected heterozygosity ranged from 0.167 to 0.6 and from 0.409 to 0.653, respectively. These microsatellite markers will be useful to assess the genetic variation and genetic structure of P. obconica.


2018 ◽  
Vol 17 (47) ◽  
pp. 1352-1357
Author(s):  
Hua Lichun ◽  
Hadziabdic Đenita ◽  
Amissah Naalamle ◽  
Nowicki Marcin ◽  
L. Boggess Sarah ◽  
...  

2012 ◽  
Vol 16 (3) ◽  
pp. 230-236 ◽  
Author(s):  
Sang-In Kim ◽  
Junghwa An ◽  
Sung-Kyoung Choi ◽  
Yun-Sun Lee ◽  
Han-Chan Park ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document