scholarly journals Roughness of Metal Surface After Finishing Using Ceramic Brush Tools

2018 ◽  
Vol 18 (1) ◽  
pp. 20-27 ◽  
Author(s):  
T. Salacinski ◽  
T. Chmielewski ◽  
M. Winiarski ◽  
R. Cacko ◽  
R. Świercz

AbstractThe paper describes processes of metal parts edges deburring and surface of metal samples polishing with ceramic tools based on fibre aluminium oxide. It presents the construction of basic types of tools and their practical industrial applications, and evaluates the influence of machining parameters on surface roughness. An important advantage of the used tools is the possibility of deburring and machining of external flat and shaped surfaces as well as internal surfaces and even deep drilled holes. These tools can be practically used for machining all construction materials. The results of machining of selected engineering materials, such as aluminium 5052 and 2017A, Inconel 718, non-alloy steel, in various variants of machining parameters are presented. The influence of machining parameters on machined surface roughness was described.

2020 ◽  
Author(s):  
Yikun Yuan ◽  
Wenbin Ji ◽  
Shijie Dai ◽  
Huibo Zhang

Abstract To ensure accuracy and improve the processing efficiency of Ti–6Al–4V alloys, dry turning experiment of Ti–6Al–4V was carried out using a novel TiB2-based cermet tool. The tool was reinforced by nanoscale VC additive and exhibited excellent hardness and fracture toughness.Response Surface Methodology (RSM) was used in the experiment to verify andevaluatethe cutting performance ofTiB2-based cermet tool.The cutting forces and machined surface roughness (Ra) were selected as the optimization objective. An analysis of variance (ANOVA) was used to find out the effective machining parameters on response factorsand demonstrate correctness of the models. It was found that theeffective factor on surface roughness was feed rate, while cutting depth significantly affected cutting forces.And the confirmation experiments showedthat the predicted values were in good agreement with experimental values. Based on the optimized cutting parameters, the tool life was measured and tool wear mechanismwasinvestigated. When the vc, apandfwere 100 mm/min, 0.16 mm, 0.1 mm/rev respectively for Ra optimization, the cutting length and tool lifecould reach to 3233 m and 29.4 min, respectively, due to the excellentwear resistance and stability of TiB2-based cermet tool at high cutting temperature. In this case, the main wear mechanism was adhesive wear and diffusion wear.


2017 ◽  
Vol 260 ◽  
pp. 219-226 ◽  
Author(s):  
Viktors Gutakovskis ◽  
Eriks Gerins ◽  
Janis Rudzitis ◽  
Artis Kromanis

From the invention of turning machine or lathe, some engineers are trying to increase the turning productivity. The increase of productivity is following after the breakout in instrumental area, such as the hard alloy instrument and resistance to wear cutting surfaces. The potential of cutting speed has a certain limit. New steel marks and cutting surfaces types allow significantly increase cutting and turning speeds. For the most operation types the productivity increase begins from the feeding increase. But the increase of feeding goes together with machined surface result decreasement. Metal cutting with high feeding is one of the most actual problems in the increasing of manufacturing volume but there are some problems one of them is the cutting forces increasement and larger metal removal rate, which decrease the cutting tool life significantly. Increasing of manufacturing volume, going together with the cutting instrument technology and material evolution, such as the invention of the carbide cutting materials and wear resistant coatings such as TiC and Ti(C,N). Each of these coating have its own properties and functions in the metal cutting process. Together with this evolution the cutting tool geometry and machining parameters dependencies are researched. Traditionally for the decreasing the machining time of one part, the cutting parameters were increased, decreasing by this way the machining operation quantity. In our days the wear resistance of the cutting tools increasing and it is mostly used one or two machining operations (medium and fine finishing). The purpose of the topic is to represent the experimental results of the stainless steel turning process, using increased cutting speeds and feeding values, to develop advanced processing technology, using new modern coated cutting tools by CVD and PVD methods. After investigation of the machined surface roughness results, develop the mathematical model of the cutting process using higher values of the cutting parameters.


2021 ◽  
Author(s):  
Ri Pan ◽  
Ren Xingfei ◽  
Zhenzhong Wang ◽  
Dongju Chen ◽  
Jinwei Fan

Abstract The relational model between machined surface roughness (MSR) and the adopted key machining parameters (KMPs) significantly influences the predictability and controllability of the machining process; therefore, it has attracted considerable attention. However, two critical problems still persist in this field. First, although most existing studies focus on the prediction model for MSR (forward model), wherein the MSR is dependent on input KMPs values, the inverse model that can calculate the KMP based on input MSR value is equally important; however, the inverse model has not been investigated as extensively as the forward model. The second issue is that most of the existing forward models are mainly established based on mechanism analysis; however, due to the complexity of most machining processes, the accuracy and generality of the model are not optimal. Therefore, this paper proposes a universal method for mathematically establishing the inverse model of the relation between the MSR and KMP. Initially, based on the response surface methodology, orthogonal experiments were designed and conducted, and the results were used to establish the forward model between the MSR and KMP. Subsequently, by combining the forward model with a self-developed genetic algorithm-based multi-objective optimization algorithm, an establishing method for inverse model between MSR and KMPs was proposed. Finally, experiments were conducted to validate the developed models. The experimental results show that for the forward model, all the 10 experimental MSR values approach the MSR values predicted by the forward model, and the average deviation was only approximately 7%. Contrarily, for the inverse model, the average deviation was only approximately 7.64%. Both these results verify the accuracy and effectiveness of the proposed models. With this method, as long as the desired processing results and constraints are given, the process parameters can be accurately derived.


2018 ◽  
Vol 19 (11) ◽  
pp. 1611-1618 ◽  
Author(s):  
Yixuan Feng ◽  
Tsung-Pin Hung ◽  
Yu-Ting Lu ◽  
Yu-Fu Lin ◽  
Fu-Chuan Hsu ◽  
...  

Author(s):  
Nandkumar N Bhopale ◽  
Raju S Pawade ◽  
Suhas S Joshi

The ball end milling process is commonly used for generating complex three-dimensional sculptured surfaces with definite curvature. In such cases, variation of surface properties along with the machined surface is not well understood. Therefore, this article investigates the effect of machining parameters on the quality of surface in ball end milling of thin-shaped cantilever of Inconel 718. A distinct variation is also observed in the measured values of deflection of workpiece: surface roughness and surface damage in different regions, that is, fixed end, mid portion and free end of machined surface. The experiments were conducted according to the central composite design with four factors, namely, cutting speed, feed, workpiece thickness and workpiece inclination with tool path orientation. It is observed that the process parameters have statistically significant effect on machined surface of Inconel 718. Horizontal tool path condition during milling is most favourable in all aspects of surface quality with high speed and lower feed. The surface roughness values at the fixed end of plate are less as compared with that of mid portion and free end sides. Scanning electron microscope images show various defects such as side flow, smeared layer, microparticle, grooves and feed marks.


Minimum quantity lubrication (MQL) is an eco-friendly method, where a small amount of fluid was sprayed to cutting edge in mist form with the aid of the air. The foregoing studies revealed that inappropriate machining parameters without the assistance of the cutting fluid methods became a major challenge in milling aluminum alloy 7075-T6. The paper presents the findings of the experimental work to assess the effect of machining parameters towards cutting tool life and machined surface roughness in milling aluminum alloy 7075-T6 at high cutting speed under MQL condition. An eight-run experiment was designed according to full factorial design based upon two levels of cutting speed (500 m/min, 600 m/min), feed rate (0.12 mm/tooth, 0.15 mm/tooth), and axial depth of cut (1.40 mm, 1.70 mm) and then analyzed employed ANOVA to determine the significant machining parameters. The cutting tool life and machined surface roughness were assigned by the rejection criterion of tool flank wear in the milling operation. The optical microscope and portable surface roughness tester were applied to analyze tool wear and average surface roughness value. Cutting speed and feed rate were significantly contributing to the tool life and surface roughness. The longest tool lifespan of 20.14 minutes and lowest surface roughness value of 0.569 µm were obtained at a speed of 500 and 600 m/min, respectively, with a low combination of the rest of parameter which are 0.12 mm/tooth and 1.40 mm.


2020 ◽  
Vol 71 (12) ◽  
pp. 1980-1988 ◽  
Author(s):  
Jintao Niu ◽  
Zhanqiang Liu ◽  
Guijie Wang ◽  
Weimin Huang ◽  
Ying Xu

2014 ◽  
Vol 800-801 ◽  
pp. 576-579
Author(s):  
Lin Hua Hu ◽  
Ming Zhou ◽  
Yu Liang Zhang

In this work, cutting experiments were carried out on titanium alloy Ti6Al4V by using polycrystalline diamond (PCD) tools to investigate the effects of the tool geometries and cutting parameters on machined surface roughness. Experimental results show machined surface roughness decreases with increases in the flank angle, tool nose radius and cutting speed within a limited range respectively, and begins to increase as the factors reaches to certain values respectively. And machined surface roughness decreases with increases in feed rate and cutting depth respectively.


Sign in / Sign up

Export Citation Format

Share Document