scholarly journals Evaluation of the Possibility of Performing Cold Backward Extrusion of Axisymmetrical Thinwalled Aluminum Die Stampings with Square Section / Ocena Możliwości Wyciskania Przeciwbieżnego Na Zimno Osiowosymetrycznych Wyprasek Z Cienką Ścianką O Przekroju Kwadratowym Z Aluminium

2015 ◽  
Vol 60 (4) ◽  
pp. 3043-3050 ◽  
Author(s):  
T. Miłek ◽  
B. Kowalik ◽  
B. Kuliński

The paper presents evaluation of the possibility of performing cold backward extrusion of axisymmetrical thin-walled aluminum (Al 99.50, ENAW-1050A) die stampings with a square section at the strain ε=ln(A0/A1)=2 (where A0 - cross sectional area of the billet, A1 - cross sectional area of the die stamping), and the ratio h1/b=3.6 (where h1 - height of the die stamping in mm, b - width of the base of the die stamping in mm). The analysis was conducted on the basis of the results of computer modelling (FEM) and experimental investigations on backward extrusion. The boundary conditions for numerical calculations were determined experimentally with respect to the flow curve and mechanical properties of aluminum. The results of investigations into backward extrusion of thin-walled square-sectioned aluminum die stampings might be used as guidelines to develop a technological process for industrial practice.

2016 ◽  
Vol 716 ◽  
pp. 68-75 ◽  
Author(s):  
Tomasz Miłek

The paper presents experimental and computer modelling (FEM) results of investigations into cold backward extrusion of copper cans. The simulations were performed using QFORM software based the finite element method (FEM). The samples used in investigations were pieces of copper rods having the diameter d0 = 24,5 mm and height h0 = 16 mm (h0/d0=0,65). The billets were heat treated (annealed). Heat treatment is used to increase the plasticity of the material before cold backward extrusion. The material was annealed at 550°C for a period of 1 h, and then subjected to solution treatment in water. The flat and conical punch-face shapes with different diameter of punch used for cold extrusion (ds=15mm; 16mm; 17mm; 19mm and 20mm, respectively). The deformation ratios of material in paper was defined as relative: strain of can bottom thickness εh =Δh/h0 (where Δh – the punch displacement, h0 – billet height), reduction in area εA= (A0-A1)/A0 and equivalent strain ε= ln (A0/A1) (where A0 – cross sectional area of the billet, A1 - cross sectional area of the die stamping). In investigations, computer calculated and experimental force waveforms as the function of displacement and εh were obtained. Comparing changes in forces in cold backward extrusion for different diameter of punch, it is stated that the load Pw increases with an increase in εh. The effect of equivalent strain ε on punch load Pw for cold backward extrusion of copper cans is presented. Both in experimental and modeling investigations, the axial force increased together with an increase in the equivalent strain.


2010 ◽  
Vol 638-642 ◽  
pp. 675-680 ◽  
Author(s):  
Martina Thomann ◽  
Nina von der Höh ◽  
Dirk Bormann ◽  
Dina Rittershaus ◽  
C. Krause ◽  
...  

Current research focuses on magnesium based alloys in the course of searching a resorbable osteosynthetic material which provides sufficient mechanical properties besides a good biocompatibility. Previous studies reported on a favorable biocompatibility of the alloys LAE442 and MgCa0.8. The present study compared the degradation process of cylindrical LAE442 and MgCa0.8 implants after 12 months implantation duration. Therefore, 10 extruded implants (2.5 x 25 mm, cross sectional area 4.9 mm²) of both alloys were implanted into the medullary cavity of both tibiae of rabbits for 12 months. After euthanization, the right bone-implant-compound was scanned in a µ-computed tomograph (µCT80, ScancoMedical) and nine uniformly distributed cross-sections of each implant were used to determine the residual implants´ cross sectional area (Software AxioVisionRelease 4.5, Zeiss). Left implants were taken out of the bone carefully. After weighing, a three-point bending test was carried out. LAE442 implants degraded obviously slower and more homogeneously than MgCa0.8. The mean residual cross sectional area of LAE442 implants was 4.7 ± 0.07 mm². MgCa0.8 showed an area of only 2.18 ± 1.03 mm². In contrast, the loss in volume of LAE442 pins was more obvious. They lost 64 % of their initial weight. The volume of MgCa0.8 reduced clearly to 54.4 % which corresponds to the cross sectional area results. Three point bending tests revealed that LAE442 showed a loss in strength of 71.2 % while MgCa0.8 lost 85.6 % of its initial strength. All results indicated that LAE442 implants degraded slowly, probably due to the formation of a very obvious degradation layer. Degradation of MgCa0.8 implants was far advanced.


2008 ◽  
Vol 105 (3) ◽  
pp. 805-810 ◽  
Author(s):  
C. Couppé ◽  
M. Kongsgaard ◽  
P. Aagaard ◽  
P. Hansen ◽  
J. Bojsen-Moller ◽  
...  

The purpose of this study was to examine patellar tendon (PT) size and mechanical properties in subjects with a side-to-side strength difference of ≥15% due to sport-induced loading. Seven elite fencers and badminton players were included. Cross-sectional area (CSA) of the PT obtained from MRI and ultrasonography-based measurement of tibial and patellar movement together with PT force during isometric contractions were used to estimate mechanical properties of the PT bilaterally. We found that distal tendon and PT, but not mid-tendon, CSA were greater on the lead extremity compared with the nonlead extremity (distal: 139 ± 11 vs. 116 ± 7 mm2; mid-tendon: 85 ± 5 vs. 77 ± 3 mm2; proximal: 106 ± 7 vs. 83 ± 4 mm2; P < 0.05). Distal tendon CSA was greater than proximal and mid-tendon CSA on both the lead and nonlead extremity ( P < 0.05). For a given common force, stress was lower on the lead extremity (52.9 ± 4.8 MPa) compared with the nonlead extremity (66.0 ± 8.0 MPa; P < 0.05). PT stiffness was also higher in the lead extremity (4,766 ± 716 N/mm) compared with the nonlead extremity (3,494 ± 446 N/mm) ( P < 0.05), whereas the modulus did not differ (lead 2.27 ± 0.27 GPa vs. nonlead 2.16 ± 0.28 GPa) at a common force. These data show that a habitual loading is associated with a significant increase in PT size and mechanical properties.


Author(s):  
Xini Zhang ◽  
Liqin Deng ◽  
Songlin Xiao ◽  
Lu Li ◽  
Weijie Fu

Background: Patients with Achilles tendon (AT) injuries are often engaged in sedentary work because of decreasing tendon vascularisation. Furthermore, men are more likely to be exposed to AT tendinosis or ruptures. These conditions are related to the morphological and mechanical properties of AT, but the mechanism remains unclear. This study aimed to investigate the effects of sex on the morphological and mechanical properties of the AT in inactive individuals. Methods: In total, 30 inactive healthy participants (15 male participants and 15 female participants) were recruited. The AT morphological properties (cross-sectional area, thickness, and length) were captured by using an ultrasound device. The AT force–elongation characteristics were determined during isometric plantarflexion with the ultrasonic videos. The AT stiffness was determined at 50%–100% maximum voluntary contraction force. The AT strain, stress, and hysteresis were calculated. Results: Male participants had 15% longer AT length, 31% larger AT cross-sectional area and 21% thicker AT than female participants (p < 0.05). The plantarflexion torque, peak AT force, peak AT stress, and AT stiffness were significantly greater in male participants than in female participants (p < 0.05). However, no significant sex-specific differences were observed in peak AT strain and hysteresis (p > 0.05). Conclusions: In physically inactive adults, the morphological properties of AT were superior in men but were exposed to higher stress conditions. Moreover, no significant sex-specific differences were observed in peak AT strain and hysteresis, indicating that the AT of males did not store and return elastic energy more efficiently than that of females. Thus, the mechanical properties of the AT should be maintained and/or improved through physical exercise.


2021 ◽  
Author(s):  
Hui Cao ◽  
Wenke Chen ◽  
Zhiyuan Rui ◽  
Changfeng Yan

Abstract Metal nanomaterials exhibit excellent mechanical properties compared with corresponding bulk materials and have potential applications in various areas. Despite a number of studies of the size effect on Cu nanowires mechanical properties with square cross-sectional, investigations of them in rectangular cross-sectional with various sizes at constant volume are rare, and lack of multifactor coupling effect on mechanical properties and quantitative investigation. In this work, the dependence of mechanical properties and deformation mechanisms of Cu nanowires/nanoplates under tension on cross-sessional area, aspect ratio of cross-sectional coupled with orientation were investigated using molecular dynamics simulations and the semi-empirical expressions related to mechanical properties were proposed. The simulation results show that the Young’s modulus and the yield stress sharply increase with the aspect ratio except for the <110>{110}{001} Cu nanowires/nanoplates at the same cross-sectional area. And the Young’s modulus increases while the yield stress decreases with the cross-sectional area of Cu nanowires. However, both of them increase with the cross-sectional area of Cu nanoplates. Besides, the Young’s modulus increases with the cross-sectional area at all the orientations. The yield stress shows a mildly downward trend except for the <111> Cu nanowires with increased cross-sectional area. For the Cu nanowires with a small cross-sectional area, the surface force increases with the aspect ratio. In contrast, it decreases with the aspect ratio increase at a large cross-sectional area. At the cross-sectional area of 13.068 nm2, the surface force decreases with the aspect ratio of the <110> Cu nanowires while it increases at other orientations. The surface force is a linearly decreasing function of the cross-sectional area at different orientations. Quantitative studies show that Young’s modulus and yield stress to the aspect ratio of the Cu nanowires satisfy exponent relationship. In addition, the main deformation mechanism of Cu nanowires is the nucleation and propagation of partial dislocations while it is the twinning-dominated reorientation for Cu nanoplates.


2019 ◽  
Vol 4 (4) ◽  
pp. 2473011419S0045
Author(s):  
Jennifer A. Zellers ◽  
Jeremy Eekhoff ◽  
Remy Walk ◽  
Simon Y. Tang ◽  
Mary K. Hastings ◽  
...  

Category: Diabetes Introduction/Purpose: Advanced glycation endproducts (AGEs) accumulate in tendon tissue in individuals with diabetes mellitus (DM). Although AGEs have been shown to impact tendon function by decreasing collagen sliding, this relationship has not been explored in humans with diabetes. Despite the prevalence of foot deformity in this population and implications of posterior tibialis dysfunction, the mechanical behavior of the posterior tibialis tendon has only been reported in a small (n=5), cadaveric study that did not report DM status. Therefore, the purpose of this study is to determine the effects of DM-associated AGEs accumulation on the mechanical properties of the posterior tibialis tendon. Methods: Posterior tibialis tendons were collected from individuals with and without DM undergoing lower extremity amputation. A 1-2 mm tendon transection was used for AGEs quantification. AGEs were quantified via fluorescence following papain digestion and hydrolyzation as described previously. Fluorescence was compared to a quinine standard to calculate AGEs content, which was normalized to sample wet weight. Tensile mechanical testing was completed with the remaining specimen (˜25 mm long). Tendon cross-sectional area was measured with a non-contact laser scanning device. Specimens were preloaded to 10 N and preconditioned for 10 cycles at 6% strain, subjected to stress-relaxation at 6% strain for 10 minutes, and loaded with a triangular waveform to a maximum of 10% strain at a rate of 1% strain per second. Individual values and group descriptive statistics are reported for AGEs content and mechanical testing. Relationships between AGEs content and various mechanical testing parameters were evaluated using Spearman correlation. Results: Six individuals (5 with DM, 4 male, mean(SD) age: 56(5)years) were included. AGEs content was increased in DM tendon (DM: 20.5(5.1), non-DM: 9.5 ng quinine/mg wet weight). Compared to non-DM tendon, DM tendons had larger cross-sectional area (DM: 44.3(4.9), non-DM: 11mm2). From stress relaxation, DM tendons had smaller peak (DM: 0.41(0.25), non-DM: 1.16 MPa) and equilibrium stress (DM: 0.23(0.13), non-DM: 0.83 MPa), and larger percent relaxation (DM: 46(6)%, non-DM: 29%)(Figure 1-A). DM tendons had decreased maximum stress at 10% strain (DM: 0.63(0.45), non-DM: 1.75 MPa), increased linear stiffness (DM: 35.2(27.6), non-DM: 19.2N/mm), and decreased linear modulus (DM: 8.5(7.0), non-DM: 20.1 MPa)(Figure 1-B, C) compared to non- DM tendon. Hysteresis (i.e., energy loss upon unloading) was higher in DM tendons (DM: 0.35(0.05), non-DM: 0.22), and positively correlated to AGEs (rho=0.943, p=0.005, Figure 1-D). Conclusion: Posterior tibialis tendons with DM exhibited increased AGEs content and altered mechanical properties. DM tendons were less stiff when accounting for cross-sectional area but had 2-4x the cross-sectional area of non-DM tendon, with inconsistent patterns in total tendon stiffness potentially attributable to several factors. DM tendons showed impaired energy storage and return, which was most strongly associated with AGEs. Non-DM samples were limited and the linear modulus was smaller than previously reported, however, all but one DM tendon had a modulus less than 50% of the non-DM sample. Future work will explore the mechanisms of AGEs-associated DM tendon impairments.


2001 ◽  
Vol 137 (3) ◽  
pp. 337-349 ◽  
Author(s):  
N. AHMAD ◽  
D. WILMAN

Dried lucerne (Medicago sativa), dried Italian ryegrass (Lolium multiflorum) and wheat (Triticum aestivum) straw, in the latter case supplemented with soyabean meal, were each fed to cattle, sheep and rabbits in each of 2 years. In both years, plant parts of the three diets were tested for in vitro digestibility, in both milled and chopped (1 cm lengths) form, and for cell wall content (as NDF). In the first year, the plant parts were analysed for lignin and both the plant parts and the faeces were examined microscopically for the proportions of thick-walled, thin-walled and epidermal cells in cross-sectional area and for the thickness of the cell walls.The plant parts with the lowest proportion of thick-walled cells in cross-sectional area (0·05) were the lucerne leaflets and those with the highest proportion of thick-walled cells (0·68) were the stems of wheat straw. The cell walls of the thick-walled tissues were thinnest (0·7–0·8 μm) in Italian ryegrass leaf blades and sheaths. Within each cell type for the whole crop, the order of cell wall thickness was wheat straw > lucerne > Italian ryegrass. In vitro digestibility of DM was lower (by 0·031–0·085 g digestible DM/g total DM) in chopped than in milled stems of lucerne, ryegrass and wheat and in leaf sheaths of wheat. This suggests incomplete and/or delayed access of rumen microorganisms to some of the cell wall in chopped material in vitro and probably, therefore, also in chewed material in vivo. The concentrations of NDF and lignin in both ryegrass and wheat were in the order leaf blades < leaf sheaths < stems.The lucerne crops were more mature than the ryegrass crops and there was no consistent difference between lucerne and ryegrass in intake of DM or intake of NDF. The intake of wheat straw DM was 0·52 that of lucerne and ryegrass, whereas the intake of straw NDF was 0·89 that of lucerne or ryegrass NDF. Intake of both DM and NDF in relation to metabolic body weight was highest (87–93 g DM and 45–48 g NDF/kg W0·75) with cattle on lucerne and ryegrass and rabbits on ryegrass and lowest (33–34 g DM and 29–30 g NDF/kg W0·75) with sheep and rabbits on straw. The output of faeces/kg W0·75 was particularly high (38–41 g DM and 30–32 g NDF) from rabbits fed lucerne or ryegrass. Digestibility of DM was highest (0·726–0·732 g/g) with cattle and sheep fed ryegrass, followed by cattle and sheep fed lucerne and sheep fed straw. Digestibility of NDF was highest (0·708–0·752 g digestible NDF/g total NDF) with cattle and sheep fed ryegrass and sheep fed straw. Digestibility of NDF with rabbits was lower than with cattle or sheep, but was higher than might have been expected, in a small, hind-gut fermenter, with ryegrass (0·339 g/g) and straw (0·492 g/g).The proportion of thin-walled cells was much lower in the faeces than in the diets, but there was an appreciable proportion (0·10–0·27) of these cells in the cross-sectional area of faecal particles. The cell walls of all cell types were thinner in the faeces than in the diets, e.g. those of the thick-walled cells were thinner by 0·35 μm in lucerne, by 0·11 μm in Italian ryegrass and by 0·41 μm in wheat straw. The faeces from rabbits had higher proportions of thick-walled and epidermal plant cells in cross-sectional area, and a lower proportion of thin-walled cells, than the faeces from cattle and sheep.


Author(s):  
Tore Fischer ◽  
Manuel Rudersdorf ◽  
Sebastian Burgmann ◽  
Thorsten kleine Sextro ◽  
Joerg R. Seume

The present paper focuses on the potential efficiency improvements and the stable operating range of a centrifugal fan for fuel cell applications. Improvements will be achieved by variability of the cross-sectional area of diffuser and volute by use of a moving backplate. The investigation consists of three parts: The first part describes the design and the performance prediction of a diffuser-volute combination with a variable cross-sectional area, based on empirical correlations and low-resolution CFD (Computational Fluid Dynamics) simulations. For the second part, high-resolution 360 degree CFD simulations are used to gain deeper insight into the flow mechanisms and their influence on fan performance. The last part presents the experimental investigations carried out to validate the numerical models. For this purpose, a demonstrator of the fan including a diffuser-volute combination with variable cross-sectional area is manufactured and investigated using optical PIV (Particle Image Velocimetry) measurements.


2020 ◽  
Vol 6 (12) ◽  
pp. 2375-2396
Author(s):  
Cecielle N. Dacuan ◽  
Virgilio Abellana ◽  
Hana Astrid Canseco

Corrosion is one of the significant deteriorations of reinforced concrete structures. It accelerated the performance loss of the structures, leading to a cross-sectional reduction of steel, which affects its mechanical properties, particularly its tensile capacity and ductility. The purpose of this study is to assess the serviceability and safety of corroded-damaged structures, particularly those exposed to aggressive marine environments. A total of 54 pcs of 150 mm-diameter and 300mm-height of cylindrical specimen were cast. Small-scaled specimens were accelerated to corrosion using impressed current techniques with a constant current density of 200 µA/cm2. Samples were immersed in a simulated environment with a 5% solution of sodium bicarbonate during corrosion acceleration. Corrosion alters the surface configuration of the steel bar. Pitting corrosions due to chloride aggression causes the residual cross-sectional area of corroded rebars to no longer round and varies considerably along its circumference and length. The reduction of the steel cross-sectional area has a significant impact on the degradation of the strength and durability of reinforcing structures. The residual capacity of the corroded reinforcement decreases with the reduction of the cross-sectional area of the steel reinforcement. The rate of corrosion affects the extent of the remaining service life of a corroded reinforced concrete structure. Doi: 10.28991/cej-2020-03091624 Full Text: PDF


Sign in / Sign up

Export Citation Format

Share Document