scholarly journals Analysis of Stress and Strain Fields in and around Inclusions of Various Shapes in a Cylindrical Specimen Loaded in Tension

2016 ◽  
Vol 61 (2) ◽  
pp. 569-576 ◽  
Author(s):  
A. Neimitz ◽  
U. Janus

Abstract A numerical analysis is performed of the stress field in and around inclusions of various shapes. Inclusions both stiffer and more compliant than the metal matrix are analysed. The critical stresses required for inclusion fracture are estimated after observation of cavities and inclusions by scanning electron microscopy. Real inclusions were observed after performing uniaxial loading to different amounts of overall strain. The material tested was Hardox-400 steel.

Author(s):  
Xiaochun Li ◽  
Zhiwei Li

Permalloy NiFe matrix nanocomposite layers were electroplated on a copper substrate. The volume fraction of nano-sized Si3N4 particles in NiFe matrix was controlled by the addition of various percentages of Si3N4 particles in the NiFe electrolyte. The nanocomposite layers were analyzed by a scanning electron microscopy (SEM). Microhardness test was performed. With nano-sized Si3N4 particles in the NiFe matrix, the microhardness of NiFe was improved. The samples were then annealed at 800 °C for about 20 hours. The microhardness declined more with more Si3N4 particles in the NiFe matrix. The analysis result from Energy Dispersive Spectrometer (EDS) in the SEM showed that the hardness declination could be caused by the segregation of Si3N4 in the NiFe matrix. Finally this paper presents nanocomposite micromolds fabricated by electroplating onto polymer molds that were fabricated by micro-stereolithgraphy.


Author(s):  
Pedram Farhadipour ◽  
M Sedighi ◽  
Mohammad Heydari vini

In this study, warm accumulative roll bonding process has been used to produce metal matrix composite (Al/1% Al2O3). The microstructure and mechanical properties of composites have been studied after different warm accumulative roll bonding cycles by tensile test, Vickers micro-hardness test and scanning electron microscopy. The scanning electron microscopy results reveal that during higher warm accumulative roll bonding cycles, the layers of alumina particles are broken. It leads to the generation of elongated dense clusters with smaller sizes. This microstructure evolution leads to improve the hardness, strength and elongation during the accumulative roll bonding process. The results demonstrated that the dispersed alumina clusters improve both the strength and toughness of the composites. Also, an extra pass of cold rolling on the final warm accumulative roll bonding product shows the ability to obtain further strength. In general, warm accumulative roll bonding process would allow fabricating metal particle reinforced with high uniformity, good mechanical properties and high bonding strength.


2006 ◽  
Vol 530-531 ◽  
pp. 467-472 ◽  
Author(s):  
Carlos Maurício Fontes Vieira ◽  
Sérgio Neves Monteiro

The incorporation of a granite waste into a vitrified ceramic tile body was investigated. The granite waste came from an industry of stone sawing operations located in the municipal area of Santo Antônio de Pádua, State of Rio de Janeiro, Brazil. The investigated compositions were elaborated substituting partially and totally the feldspar by the granite waste. Cylindrical specimen were prepared by uniaxial pressure at 30 MPa and then fired at temperatures varying from 1050 to 1200oC. Fired properties such as bulk density, linear shrinkage, water absorption and diametrical compression were determined. The microstructure of fired samples was evaluated by scanning electron microscopy. The results showed that the replacement of feldspar by granite waste promoted a better vitrification, decreasing the open porosity and increasing the mechanical strength.


2014 ◽  
Vol 802 ◽  
pp. 84-89 ◽  
Author(s):  
Sérvulo José Ferreira Alves ◽  
Marcio Marcelo Sampaio de Sousa ◽  
Everthon Rodrigues de Araújo ◽  
Francisco Ambrozio Filho ◽  
Maurílio José dos Santos ◽  
...  

This work aims the processing of metal matrix AA2124 aluminium alloy composites reinforced by alumina (Al2O3) and silicon carbide (SiC). The composites were manufactured by powder metallurgy techniques, in a grinding using a ball mill spex type (high energy) at a ratio of balls/ powders of 10:1 and grinding time of 30 and 60 minutes using stearic acid (C18H36O2) as lubricant to each one of the samples. The fractions used in both reinforcements were 5, 10 and 15% in mass. The microstructural characterizations of AA2124 alloy powders with the reinforcements of alumina (Al2O3) and silicon carbide (SiC) powders were obtained by scanning electron microscopy (SEM) and the particles sizes and distribuition of the particle sizes in powders produced were obtained by laser diffraction, whereas the sintered characterizations were obtained by scanning electron microscopy (SEM) and mechanical characterization of the sintered tests was achieved by Vickers hardness (HV). The composites were uniaxially cold compacted (room temperature), at a pressure of 7.0 t / cm2, thus forming small pellets that were sintered (at a temperature of 500 °C) in a vacuum furnace at IPEN (SP). There was observed the influence of the respective bulk fractions of reinforcement particles used in mechanical characteristics presented in the resulting composites.


2006 ◽  
Vol 15-17 ◽  
pp. 251-254
Author(s):  
Hong Mei Wei ◽  
Lin Geng ◽  
Xue Xi Zhang

Solidification behavior of SiCw/Al-18Si metal matrix composites (MMCs) was studied by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and differential scanning calorimeter (DSC) in order to reveal the effects of strontium addition and whisker content. The results show that the Si phase does not nucleate on SiC whisker surface. With the increasing of SiC whisker content, solidification onset and peak temperatures of primary Si decrease. Sr addition lowers solidification onset and peak temperatures of primary Si, and reduces its size. Whisker content has larger effects on solidification onset and peak temperatures of primary Si without Sr addition than that of primary Si with Sr addition.But solidification onset and peak temperatures of eutectic are barely affected by whisker content and Sr addition.


2020 ◽  
Vol 54 (22) ◽  
pp. 3171-3180
Author(s):  
D Kumaran ◽  
A Rajadurai ◽  
K Padmanabhan

This novel research work reports the possibility of using a high-performance polymer fiber as a potential reinforcement in a suitable metal matrix for the development of composites. The manufacturing route is an additive process using High-Velocity Oxy-Fuel Thermal-Spray technique. Continuous strands of Poly-benzobisoxazole and para-aramid were used as high-performance polymer reinforcement in a uni-directional configuration, and Zinc metal was used as matrix material. The developed Thermal-Spray composites were subjected to mechanical tensile test and characterized by Scanning Electron Microscopy and Optical Microscopy. The results of the tensile tests revealed a substantial increase in the tensile properties and the investigation of Scanning Electron Microscopy and optical images showed a good deposition of matrix material on the reinforcing polymer fibers. The testing and characterization results were conclusive of the fact that Poly-benzobisoxazole and para-aramid can be used as an effective reinforcement even at low volume content for high strength structural applications.


Author(s):  
M H Loretto

In general the microstructural assessment of advanced materials can be satisfactorily assessed using optical and scanning electron microscopy together with X-ray diffraction. Transmission electron microscopy (TEM) is used only when the scale and nature of the information which can be obtained from TEM is appropriate. The aim of the present article is to highlight some examples of the unique role that TEM has played in the field of structural materials. Four areas will be discussed: metal matrix composites; precipitation in Al-Li based alloys; rapid solidification; intermetallics.In the field of metal-matrix composites one of the most important aspects is nature of the bonding and interaction between the reinforcement and the matrix, and this is an area where the spatial resolution of analytical TEM is required in order to characterise any interaction. The recent work on Ti6A14V/TiC and Ti24All INb/TiC composites has illustrated this very clearly. Even after heat treatments of 50h at 1100°C the TiC appears to be unaffected as assessed by both optical and scanning electron microscopy. Only when TEM is used is it possible to see that there has been any interaction.


Sign in / Sign up

Export Citation Format

Share Document