The Lodge Rubberlike Liquid Behavior for Cheese in Large Amplitude Oscillatory Shear

2001 ◽  
Vol 11 (6) ◽  
pp. 312-319 ◽  
Author(s):  
Y.-C. Wang ◽  
S. Gunasekaran ◽  
A. J. Giacomin

AbstractThe viscoelasticity of reduced-fat Cheddar and Mozzarella cheeses was characterized in small (parallel disk rheometer, go = 0.01) and large (sliding plate rheometer, 0.2< go <7) amplitude oscillatory shear at 40 and 60˚C. We deduced the linear relaxation spectrum from the small strain measurements. At large strain amplitudes, we found sinusoidal stress responses whose amplitudes are well below those predicted from the linear relaxation spectrum, and yet remarkably linear with strain amplitude. We call this the large strain linear regime. We discovered that the Lodge rubberlike liquid can quantitatively explain the large strain linear regime if we scale down the relaxation moduli in the linear spectrum by a constant. This large strain linear regime persists to much higher strain amplitudes for Cheddar (go £ 4) than for Mozzarella (go £ 1). This is perhaps due to oriented structure of the protein matrix in the Mozzarella cheese.

2012 ◽  
Vol 529 ◽  
pp. 228-235
Author(s):  
Jie Yao ◽  
Yong Hong Zhu

Recently, our research team has been considering to applying shape memory alloys (SMA) constitutive model to analyze the large and small deformation about the SMA materials because of the thermo-dynamics and phase transformation driving force. Accordingly, our team use simulations method to illustrate the characteristics of the model in large strain deformation and small strain deformation when different loading, uniaxial tension, and shear conditions involve in the situations. Furthermore, the simulation result unveils that the difference is nuance concerning the two method based on the uniaxial tension case, while the large deformation and the small deformation results have huge difference based on shear deformation case. This research gives the way to the further research about the constitutive model of SMA, especially in the multitiaxial non-proportional loading aspects.


2014 ◽  
Vol 20 (6) ◽  
pp. 1841-1847 ◽  
Author(s):  
Fei Liu ◽  
Dan Wu ◽  
Ken Chen

AbstractMechanical properties are vital for living cells, and various models have been developed to study the mechanical behavior of cells. However, there is debate regarding whether a cell behaves more similarly to a “cortical shell – liquid core” structure (membrane-like) or a homogeneous solid (cytoskeleton-like) when experiencing stress by mechanical forces. Unlike most experimental methods, which concern the small-strain deformation of a cell, we focused on the mechanical behavior of a cell undergoing small to large strain by conducting microinjection experiments on zebrafish embryo cells. The power law with order of 1.5 between the injection force and the injection distance indicates that the cell behaves as a homogenous solid at small-strain deformation. The linear relation between the rupture force and the microinjector radius suggests that the embryo behaves as membrane-like when subjected to large-strain deformation. We also discuss the possible reasons causing the debate by analyzing the mechanical properties of F-actin filaments.


2021 ◽  
Author(s):  
Kohei Hotta ◽  
Masato Iguchi

Abstract We herein propose an alternative model for deformation caused by an eruption at Sakurajima, which have been previously interpreted as being due to a Mogi-type spherical point source beneath Minami-dake. On November 13, 2017, a large explosion with a plume height of 4,200 m occurred at Minami-dake. During the three minutes following the onset of the explosion (November 13, 2017, 22:07–22:10 (Japan standard time (UTC+9); the same hereinafter), phase 1, a large strain change was detected at the Arimura observation tunnel (AVOT) located approximately 2.1 km southeast from the Minami-dake crater. After the peak of the explosion (November 13, 2017, 22:10–24:00), phase 2, a large deflation was detected at every monitoring station due to the continuous Strombolian eruption. Subsidence toward Minami-dake was detected at five out of six stations whereas subsidence toward the north of Sakurajima was detected at the newly installed Komen observation tunnel (KMT), located approximately 4.0 km northeast from the Minami-dake crater. The large strain change at AVOT as well as small tilt changes of all stations and small strain changes at HVOT and KMT during phase 1 can be explained by a very shallow deflation source beneath Minami-dake at 0.1 km below sea level (bsl). For phase 2, a deeper deflation source beneath Minami-dake at a depth of 3.3 km bsl was found in addition to the shallow source beneath Minami-dake which turned inflation after the deflation obtained during phase 1. However, this model cannot explain the tilt change of KMT. Adding a spherical deflation source beneath Kita-dake at a depth of 3.2 km bsl can explain the tilt and strain change at KMT and the other stations. The Kita-dake source was also found in a previous study of long-term ground deformation. Not only the deeper Minami-dake source MD but also the Kita-dake source deflated due to the Minami-dake explosion.


2018 ◽  
Vol 19 (10) ◽  
pp. 3045 ◽  
Author(s):  
Takehito Kikuchi ◽  
Yusuke Kobayashi ◽  
Mika Kawai ◽  
Tetsu Mitsumata

Magnetorheological elastomers (MREs) are stimulus-responsive soft materials that consist of polymeric matrices and magnetic particles. In this study, large-strain response of MREs with 5 vol % of carbonyl iron (CI) particles is experimentally characterized for two different conditions: (1) shear deformation in a uniform magnetic field; and (2), compression in a heterogeneous uniaxial magnetic field. For condition (1), dynamic viscoelastic measurements were performed using a rheometer with a rotor disc and an electric magnet that generated a uniform magnetic field on disc-like material samples. For condition (2), on the other hand, three permanent magnets with different surface flux densities were used to generate a heterogeneous uniaxial magnetic field under cylindrical material samples. The experimental results were mathematically modeled, and the relationship between them was investigated. We also used finite-element method (FEM) software to estimate the uniaxial distributions of the magnetic field in the analyzed MREs for condition (2), and developed mathematical models to describe these phenomena. By using these practicable techniques, we established a simple macroscale model of the elastic properties of MREs under simple compression. We estimated the elastic properties of MREs in the small-strain regime (neo–Hookean model) and in the large-strain regime (Mooney–Rivlin model). The small-strain model explains the experimental results for strains under 5%. On the other hand, the large-strain model explains the experimental results for strains above 10%.


Author(s):  
Ibrahim Lashin ◽  
Michael Ghali ◽  
Marc Smith ◽  
Daniel Verret ◽  
Mourad Karray

Establishment of a relationship between the shear wave velocity (Vs) and other geotechnical parameters of rockfill soils at large strains (oedometer modulus, Moedo, tangent modulus, Et) is considered a significant step towards more precise modelling of earth-structure deformation behaviour. In this study, four samples of different gradations, reconstituted from the rockfill materials used in the construction of the Romaine-2 dam, were experimented to correlate the small strain to large strain moduli. Development of Moedo and Vs with consolidation was measured in the laboratory using the piezoelectric ring-actuator technique (P-RAT) incorporated in a large oedometer. Therefore, a correlation between Moedo and small strain shear modulus Go was proposed. Moreover, numerical simulations were performed based on the Duncan-Chang hyperbolic model to correlate the Vs to Duncan-Chang initial modulus(Ei). Based on the experimental and numerical data, a relation between Ei and Vs of the tested rockfill has been established. Verification studies were also carried out on in-situ measurements during Romaine-2 dam construction, proofing the ability of the proposed relationships to predict Ei related to the minor principal stress (σ3) from in-situ Vs measurement. The proposed correlations could help the geotechnical designers to estimate accurately the deformation of rockfill materials from in-situ Vs measurement.


Author(s):  
W. B. Gookin ◽  
M. F. Riemer ◽  
R. W. Boulanger ◽  
J. D. Bray

A cyclic triaxial testing system capable of measuring very small to large strain properties on a single specimen has been developed by combining a wide variety of existing instrumentation, including piezoceramic bender elements, internal displacement measurement devices (both contact and noncontact), local displacement measurement devices, a sensitive internal load cell, and an external load cell. The bender elements provide information on soil properties in the nearly linear elastic (very small strain) range. Local and noncontact internal displacement measurements provide information about small strain range properties, whereas more traditional internal displacement measurements provide information in the small to large strain range. In addition, this apparatus can be used over a wide range of loading frequencies to investigate the effect of frequency on dynamic soil properties. By combining this equipment in a single testing system, a number of tests may be run on one specimen, eliminating the effects of variability. The broad variety of displacement measuring instruments also allows direct comparisons of these techniques on a single specimen.


1989 ◽  
Vol 62 (1) ◽  
pp. 68-81 ◽  
Author(s):  
J. L. Sullivan ◽  
K. A. Mazich

Abstract New large-strain rubber viscoelasticity results for a filled and an unfilled IIR vulcanizate and previously published results for two NR gum vulcanizates have been discussed. The data show that the “mixed” response functions of large-strain stress relaxation, and the incremental storage and relaxation moduli do not demonstrate factorizability of time and strain effects. This is a consequence of the elastic and relaxation contributions in each of the mixed functions being different. The incremental dynamic data also show that the loss modulus for the filled IIR and unfilled NR vulcanizates (unavailable for the unfilled IIR) are separable functions of time and strain. This directly shows that the relaxation spectra for the filled IIR and unfilled NR vulcanizates are independent of strain for the deformations studied. In fact, it is argued that a necessary and sufficient condition for the relaxation spectrum to be independent of strain is that the loss modulus is a factorizable function of time and strain effects. The quantitative success of the Generalized Solid-Liquid (GSL) model in representing the viscoelastic behavior of the gum NR vulcanizate has been reviewed. Although the GSL model applies only to unfilled vulcanizates, it has also been successfully used to qualitatively interpret the results for the filled IIR compounds. Both successes are attributed to the physical assumptions intrinsic to the GSL model; more specifically, 1) the relaxation spectrum is independent of the state of strain, and 2) the deformational dependences of elastic and relaxation contributions to the overall response of the system need not be the same. Physical arguments justifying these assumptions have been covered. It has also been shown with the aid of the GSL model, that a material might exist which demonstrates factorizability in stress relaxation and incremental loss modulus behaviors but nonfactorizability in the incremental storage and relaxation moduli.


Sign in / Sign up

Export Citation Format

Share Document