Investigation of Small- to Large-Strain Moduli Correlations of Rockfill Materials – Application to Romaine-2 Dam

Author(s):  
Ibrahim Lashin ◽  
Michael Ghali ◽  
Marc Smith ◽  
Daniel Verret ◽  
Mourad Karray

Establishment of a relationship between the shear wave velocity (Vs) and other geotechnical parameters of rockfill soils at large strains (oedometer modulus, Moedo, tangent modulus, Et) is considered a significant step towards more precise modelling of earth-structure deformation behaviour. In this study, four samples of different gradations, reconstituted from the rockfill materials used in the construction of the Romaine-2 dam, were experimented to correlate the small strain to large strain moduli. Development of Moedo and Vs with consolidation was measured in the laboratory using the piezoelectric ring-actuator technique (P-RAT) incorporated in a large oedometer. Therefore, a correlation between Moedo and small strain shear modulus Go was proposed. Moreover, numerical simulations were performed based on the Duncan-Chang hyperbolic model to correlate the Vs to Duncan-Chang initial modulus(Ei). Based on the experimental and numerical data, a relation between Ei and Vs of the tested rockfill has been established. Verification studies were also carried out on in-situ measurements during Romaine-2 dam construction, proofing the ability of the proposed relationships to predict Ei related to the minor principal stress (σ3) from in-situ Vs measurement. The proposed correlations could help the geotechnical designers to estimate accurately the deformation of rockfill materials from in-situ Vs measurement.

2006 ◽  
Vol 503-504 ◽  
pp. 305-310
Author(s):  
Kaneaki Tsuzaki ◽  
Andrey Belyakov ◽  
Yuuji Kimura

Deformation microstructures were studied in a two-phase (about 60% ferrite and 40% austenite) Fe – 27%Cr – 9%Ni stainless steel. Severe plastic working was carried out by rolling from 21.3×21.3 mm2 to 7.8×7.8 mm2 square bar followed by swaging from Ø7.0 to 0.6 mm rod at an ambient temperature, providing a total strain of 6.9. After a rapid increase in the hardness at an early deformation, the rate of the strain hardening gradually decreased to almost zero at large strains above 4. In other words, the hardness approached a saturation level, leading to an apparent steadystate deformation behaviour during cold working. The severe deformation resulted in the evolution of highly elongated (sub)grains aligned along the rolling/swaging axis with the final transverse (sub)grain size of about 0.1 μm and the fraction of high-angle (sub)boundaries above 60%. However, the kinetics of microstructure evolution in the two phases was different. In the ferrite phase, the transverse size of deformation (sub)grains gradually decreased during the processing and approached 0.1 μm at strains of about 6.0, while the transverse size of the austenite (sub)grains rapidly reduced to its final value of 0.1 μm after a relatively low strain about 1.0.


2021 ◽  
Vol 58 (1) ◽  
pp. 1-22
Author(s):  
Ibrahim Lashin ◽  
Michael Ghali ◽  
Mahmoud N. Hussien ◽  
Mohamed Chekired ◽  
Mourad Karray

The establishment of correlations between the small-strain shear modulus (Go) and other soil parameters (such as the oedometer constrained modulus, Moedo) at large deformations constitutes an important step toward more precise modeling of soil deformation behavior. In this study, the shear wave velocities (Vs) of 22 different granular soils of various physical characteristics were measured experimentally using the piezoelectric ring-actuator technique (P-RAT) incorporated in the conventional oedometer cell. For each sample tested, the development of Moedo with the development of relative density (Id), as well as the void ratio (e), was recorded. Then, the obtained Vs and Moedo/Go trends were correlated to the physical parameters of the tested granular soils with the development of e and Id. A practical application employing the achievements in geotechnical engineering design was also evaluated. Based on the proposed correlations, geotechnical designers can easily estimate in situ stress–settlement behavior from the predicted Moedo and Id values using simple in situ measurements.


Minerals ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 166
Author(s):  
Jennifer Girard ◽  
Reynold E. Silber ◽  
Anwar Mohiuddin ◽  
Haiyan Chen ◽  
Shun-ichiro Karato

We developed a stress sensor for in-situ deformation experiments using synchrotron radial X-ray diffraction. This stress sensor provided nearly diffraction-plane-independent stress that, when used in series with a sample, reduced the uncertainty of the average stress estimation acting on a sample. Here, we present the results of a study where pyrope was used as a stress sensor. Using a Deformation-DIA (D-DIA) high-pressure deformation apparatus, pyrope, olivine and alumina were deformed in the same run/cell assembly placed in series along the compression direction. Deformation experiments were conducted at pressures between 4 and 5 GPa and temperatures between 730 and 1273 K with strain-rates between 10−5 and 10−6 s−1. Stresses estimated from various (hkl) planes in pyrope were nearly the same; i.e., pyrope is plastically isotropic with ≤10 % variation with (hkl). However, stresses from various (hkl) planes in olivine and alumina varied by approximately a factor of 3. Comparisons between average stresses inferred from pyrope and those from different diffraction planes in olivine and alumina showed that the average stress in these materials evolved from low-end stress, estimated from various (hkl) planes at small strain, to high-end stress at a large strain. This suggests that the rate-controlling slip system in these materials changes from the soft to the hard slip system with strain.


Author(s):  
Soondo Kweon ◽  
Ahmed Amine Benzerga

The constitutive response of glassy polymers is characterized by their complex thermo-mechanical behavior such as strain rate and temperature sensitive yielding, softening at small strains and re-hardening at large strains. These complex behaviors trigger strain localization in the deformation of polymers. Since localization can be induced by both structural and material instabilities, careful analysis needs to be performed to investigate the localization behavior of polymer specimen testing. Localization such as neck formation and propagation that typically occurs in the tensile and compressive testing of polymers and plastics makes it difficult for experimentalists to extract their intrinsic constitutive response. This problem is exacerbated when localization occurs with shear bands. In this study, a macromolecular constitutive model for polymers showing small-strain softening and large-strain directional hardening is employed to investigate the effect of localization in tension onto the constitutive identification process. Considering the complex interplay between the structural and constitutive instabilities, a method based on direct, real-time measurement of area reduction at the neck section has been proposed to extract the intrinsic constitutive response of polymer materials.


Author(s):  
W.M. Stobbs

I do not have access to the abstracts of the first meeting of EMSA but at this, the 50th Anniversary meeting of the Electron Microscopy Society of America, I have an excuse to consider the historical origins of the approaches we take to the use of electron microscopy for the characterisation of materials. I have myself been actively involved in the use of TEM for the characterisation of heterogeneities for little more than half of that period. My own view is that it was between the 3rd International Meeting at London, and the 1956 Stockholm meeting, the first of the European series , that the foundations of the approaches we now take to the characterisation of a material using the TEM were laid down. (This was 10 years before I took dynamical theory to be etched in stone.) It was at the 1956 meeting that Menter showed lattice resolution images of sodium faujasite and Hirsch, Home and Whelan showed images of dislocations in the XlVth session on “metallography and other industrial applications”. I have always incidentally been delighted by the way the latter authors misinterpreted astonishingly clear thickness fringes in a beaten (”) foil of Al as being contrast due to “large strains”, an error which they corrected with admirable rapidity as the theory developed. At the London meeting the research described covered a broad range of approaches, including many that are only now being rediscovered as worth further effort: however such is the power of “the image” to persuade that the above two papers set trends which influence, perhaps too strongly, the approaches we take now. Menter was clear that the way the planes in his image tended to be curved was associated with the imaging conditions rather than with lattice strains, and yet it now seems to be common practice to assume that the dots in an “atomic resolution image” can faithfully represent the variations in atomic spacing at a localised defect. Even when the more reasonable approach is taken of matching the image details with a computed simulation for an assumed model, the non-uniqueness of the interpreted fit seems to be rather rarely appreciated. Hirsch et al., on the other hand, made a point of using their images to get numerical data on characteristics of the specimen they examined, such as its dislocation density, which would not be expected to be influenced by uncertainties in the contrast. Nonetheless the trends were set with microscope manufacturers producing higher and higher resolution microscopes, while the blind faith of the users in the image produced as being a near directly interpretable representation of reality seems to have increased rather than been generally questioned. But if we want to test structural models we need numbers and it is the analogue to digital conversion of the information in the image which is required.


1990 ◽  
Vol 57 (2) ◽  
pp. 298-306 ◽  
Author(s):  
K. W. Neale ◽  
S. C. Shrivastava

The inelastic behavior of solid circular bars twisted to arbitrarily large strains is considered. Various phenomenological constitutive laws currently employed to model finite strain inelastic behavior are shown to lead to closed-form analytical solutions for torsion. These include rate-independent elastic-plastic isotropic hardening J2 flow theory of plasticity, various kinematic hardening models of flow theory, and both hypoelastic and hyperelastic formulations of J2 deformation theory. Certain rate-dependent inelastic laws, including creep and strain-rate sensitivity models, also permit the development of closed-form solutions. The derivation of these solutions is presented as well as numerous applications to a wide variety of time-independent and rate-dependent plastic constitutive laws.


Buildings ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 276
Author(s):  
Nisar Ali Khan ◽  
Giorgio Monti ◽  
Camillo Nuti ◽  
Marco Vailati

Infilled reinforced concrete (IRC) frames are a very common construction typology, not only in developing countries such as Pakistan but also in southern Europe and Western countries, due to their ease of construction and less technical skills required for the construction. Their performance during past earthquakes has been in some cases satisfactory and in other cases inadequate. Significant effort has been made among researchers to improve such performance, but few have highlighted the influence of construction materials used in the infill walls. In some building codes, infills are still considered as non-structural elements, both in the design of new buildings and, sometimes, in the assessment of existing buildings. This is mainly due to some difficulties in modeling their mechanical behavior and also the large variety of typologies, which are difficult to categorize. Some building codes, for example, Eurocode, already address the influence of infill walls in design, but there is still a lack of homogeneity among different codes. For example, the Pakistan building code (PBC) does not address infills, despite being a common construction technique in the country. Past earthquake survey records show that construction materials and infill types significantly affect the seismic response of buildings, thus highlighting the importance of investigating such parameters. This is the object of this work, where a numerical model for infill walls is introduced, which aims at predicting their failure mode, as a function of some essential parameters, such as the friction coefficient between mortar and brick surface and mortar strength, usually disregarded in previous models. A comprehensive case study is presented of a three-story IRC frame located in the city of Mirpur, Pakistan, hit by an earthquake of magnitude 5.9 on 24 September 2019. The results obtained from the numerical model show good agreement with the damage patterns observed in situ, thus highlighting the importance of correctly modeling the infill walls when seismically designing or assessing Pakistani buildings that make use of this technology.


2012 ◽  
Vol 529 ◽  
pp. 228-235
Author(s):  
Jie Yao ◽  
Yong Hong Zhu

Recently, our research team has been considering to applying shape memory alloys (SMA) constitutive model to analyze the large and small deformation about the SMA materials because of the thermo-dynamics and phase transformation driving force. Accordingly, our team use simulations method to illustrate the characteristics of the model in large strain deformation and small strain deformation when different loading, uniaxial tension, and shear conditions involve in the situations. Furthermore, the simulation result unveils that the difference is nuance concerning the two method based on the uniaxial tension case, while the large deformation and the small deformation results have huge difference based on shear deformation case. This research gives the way to the further research about the constitutive model of SMA, especially in the multitiaxial non-proportional loading aspects.


2016 ◽  
Vol 299 ◽  
pp. 135-142 ◽  
Author(s):  
Xiaolong Cai ◽  
Yunhua Xu ◽  
Nana Zhao ◽  
Lisheng Zhong ◽  
Ziyuan Zhao ◽  
...  

2014 ◽  
Vol 20 (6) ◽  
pp. 1841-1847 ◽  
Author(s):  
Fei Liu ◽  
Dan Wu ◽  
Ken Chen

AbstractMechanical properties are vital for living cells, and various models have been developed to study the mechanical behavior of cells. However, there is debate regarding whether a cell behaves more similarly to a “cortical shell – liquid core” structure (membrane-like) or a homogeneous solid (cytoskeleton-like) when experiencing stress by mechanical forces. Unlike most experimental methods, which concern the small-strain deformation of a cell, we focused on the mechanical behavior of a cell undergoing small to large strain by conducting microinjection experiments on zebrafish embryo cells. The power law with order of 1.5 between the injection force and the injection distance indicates that the cell behaves as a homogenous solid at small-strain deformation. The linear relation between the rupture force and the microinjector radius suggests that the embryo behaves as membrane-like when subjected to large-strain deformation. We also discuss the possible reasons causing the debate by analyzing the mechanical properties of F-actin filaments.


Sign in / Sign up

Export Citation Format

Share Document