scholarly journals Concentric cylinder viscometer flows of Herschel-Bulkley fluids

2019 ◽  
Vol 29 (1) ◽  
pp. 173-181 ◽  
Author(s):  
Hans Joakim Skadsem ◽  
Arild Saasen

Abstract Drilling fluids and well cements are example non-Newtonian fluids that are used for geothermal and petroleum well construction. Measurement of the non-Newtonian fluid viscosities are normally performed using a concentric cylinder Couette geometry, where one of the cylinders rotates at a controlled speed or under a controlled torque. In this paper we address Couette flow of yield stress shear thinning fluids in concentric cylinder geometries.We focus on typical oilfield viscometers and discuss effects of yield stress and shear thinning on fluid yielding at low viscometer rotational speeds and errors caused by the Newtonian shear rate assumption. We relate these errors to possible implications for typical wellbore flows.

2015 ◽  
Vol 776 ◽  
pp. 354-389 ◽  
Author(s):  
Y. Agbessi ◽  
B. Alibenyahia ◽  
C. Nouar ◽  
C. Lemaitre ◽  
L. Choplin

In this paper, the response of circular Couette flow of shear-thinning fluids between two infinitely long coaxial cylinders to weak disturbances is addressed. It is highlighted by transient growth analysis. Both power-law and Carreau models are used to describe the rheological behaviour of the fluid. The first part of the paper deals with the asymptotic long-time behaviour of three-dimensional infinitesimal perturbations. Using the normal-mode approach, an eigenvalue problem is derived and solved by means of the spectral collocation method. An extensive description and the classification of eigenspectra are presented. The influence of shear-thinning effects on the critical Reynolds numbers as well as on the critical azimuthal and axial wavenumbers is analysed. It is shown that with a reference viscosity defined with the characteristic scales $\hat{{\it\mu}}_{ref}=\hat{K}(\hat{R}_{1}\hat{{\it\Omega}}_{1}/\hat{d})^{(n-1)}$ for a power-law fluid and $\hat{{\it\mu}}_{ref}=\hat{{\it\mu}}_{0}$ for a Carreau fluid, the shear-thinning character is destabilizing for counter-rotating cylinders. Moreover, the axial wavenumber increases with $\mathit{Re}_{2}$ and with shear-thinning effects. The second part investigates the short-time behaviour of the disturbance using the non-modal approach. For the same inner and outer Reynolds numbers, the amplification of the kinetic energy perturbation becomes much more important with increasing shear-thinning effects. Two different mechanisms are used to explain the transient growth, depending on whether or not there is a stratification of the angular momentum. On the Rayleigh line and for Newtonian fluids, the optimal perturbation is in the form of azimuthal streaks, which transform into Taylor vortices through the anti-lift-up mechanism. In the other cases, the optimal perturbation is initially oriented against the base flow, then it tilts to align with the base flow at optimal time. The scaling laws for the optimal energy amplification proposed in the literature for Newtonian fluids are extended to shear-thinning fluids.


Author(s):  
Peng Zhang

The efficient internal mixing of colliding non-Newtonian droplets upon coalescence is critical to various technological processes, specifically involving the initiation of the liquid-phase reaction of gelled hypergolic propellants, which are promising fuels for next-generation rocket engines. However, most previous studies on droplet collision used Newtonian fluids, and the non-Newtonian fluids that can be highly nonlinear and even trend reversing are much less understood to date. Motzigemba et al. [1] experimentally found that the deformation of colliding droplets of shear-thinning fluids is substantially larger than that of the Newtonian fluid. In a previous work [2], we numerically studied the initially stationary equal-sized droplet coalescence between a Newtonian and non-Newtonian droplet. Because of the reduced local viscosity and thereby smaller viscous dissipation for shear-thinning fluids, the flow in the non-Newtonian droplet is faster than that in the Newtonian droplet, resulting in unsymmetrical, albeit small, mixing induced by the shear-thinning effect. The above findings are encouraging since the droplet internal motion is driven solely by the surface tension of the initially stationary droplets regardless of the impact inertia. However, as the published references of Newtonian fluid characteristics, internal mixing of non-Newtonian fluid definitely can be substantially augmented because of the correspondingly substantial internal motion generated through the impact inertia. Thus, in terms of the equal-sized head-on colliding droplets, efficient mixing must require breaking the collision symmetry by varying the impact inertia and the rheological properties as well.


Micromachines ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 71
Author(s):  
Georgia Kontaxi ◽  
Yorgos G. Stergiou ◽  
Aikaterini A. Mouza

Over the last few years, microbubbles have found application in biomedicine. In this study, the characteristics of bubbles formed when air is introduced from a micro-tube (internal diameter 110 μm) in non-Newtonian shear thinning fluids are studied. The dependence of the release time and the size of the bubbles on the gas phase rate and liquid phase properties is investigated. The geometrical characteristics of the bubbles are also compared with those formed in Newtonian fluids with similar physical properties. It was found that the final diameter of the bubbles increases by increasing the gas flow rate and the liquid phase viscosity. It was observed that the bubbles formed in a non-Newtonian fluid have practically the same characteristics as those formed in a Newtonian fluid, whose viscosity equals the asymptotic viscosity of the non-Newtonian fluid, leading to the assumption that the shear rate around an under-formation bubble is high, and the viscosity tends to its asymptotic value. To verify this notion, bubble formation was simulated using Computational Fluid Dynamics (CFD). The simulation results revealed that around an under-formation bubble, the shear rate attains a value high enough to lead the viscosity of the non-Newtonian fluid to its asymptotic value.


Author(s):  
Nariman Ashrafi ◽  
Habib Karimi Haghighi

The effects of nonlinearities on the stability are explored for shear thickening fluids in the narrow-gap limit of the Taylor-Couette flow. It is assumed that shear-thickening fluids behave exactly as opposite of shear thinning ones. A dynamical system is obtained from the conservation of mass and momentum equations which include nonlinear terms in velocity components due to the shear-dependent viscosity. It is found that the critical Taylor number, corresponding to the loss of stability of Couette flow becomes higher as the shear-thickening effects increases. Similar to the shear thinning case, the Taylor vortex structure emerges in the shear thickening flow, however they quickly disappear thus bringing the flow back to the purely azimuthal flow. Naturally, one expects shear thickening fluids to result in inverse dynamical behavior of shear thinning fluids. This study proves that this is not the case for every point on the bifurcation diagram.


1981 ◽  
Vol 21 (06) ◽  
pp. 679-686 ◽  
Author(s):  
W.H. Seitzer

Abstract In a concentric cylinder viscometer. Utah shale oils have different characteristics, both at equilibrium flow and during start-up from rest, depending on whether the wax has crystallized as needles or spherulites. Compared with waxy crude oils, which are thixotropic, shale oil had the added rheological property of being antithixotropic. Introduction The most likely liquid synthetic fuel to be produced initially in the U.S. will be raw shale oil from western oil shale. This abundant resource is located principally in the western Rocky Mountain states of Colorado. Utah. and Wyoming (Fig. 1). Ultimate commercial production probably will be transported to marketing, distribution, and refining centers by pipeline. It has been reported that Utah shale oils produced by the Union "B" and Paraho DH retorting processes gave similar physical and chemical properties. Some properties of the two Utah shale oils are given in Table 1. The only major difference is that the Union shale oil has a pour point of - 1 degree C compared with a pour point of 25 degrees C for the Paraho oil. Wax Crystallization The difference in the pour points of the oils from the Utah shale retorted by Union Oil Co of California and Paraho is caused mainly by the difference in how the wax in the respective oils crystallizes. In the high- pour-point (25 degrees C) Paraho DK oil, the wax, under a microscope, appears as fine (1 to 10 m) needles, as expected for normal paraffins. However, the wax in the low-pour-point (−1 degrees C) Union oil forms small spherulites.Wax spherulites have not been reported before: however, this type of crystal is seen commonly in polymer. Spherulites show up as round areas containing a maltese cross when observed between crossed polars under a microscope.Photomicrographs of these crystals are shown in Figs. 2 and 3. The former, showing spherulites, is of the Union oil. In contrast, they are very different from the customary needles as typified by the Paraho oil in the latter micrograph. Presumably, these highly ordered spheres are made up of wax needles grown out radially from the center as described by Hartshorne and Stuart. The polarized light is scattered only by those needles not parallel nor perpendicular to the plane of polarization. Viscometer Measurements To understand the effect of these spherulites on the flow characteristics of raw shale oil at flow conditions expected in a long-distance pipeline, typical stress-rate measurements were made in a rotating cylinder viscometer, the Haake Rotovisco RV3 with MK500 measuring head and MVI coaxial cylinder sensor having an 82-mm cup and radii ratio of 0.95. This equipment has provisions for varying shear rate continuously at selected values down to 23.4 sec(−1)/min and can produce and record shear stress as a function of either shear rate or time. Calibration of the sensor was verified with a sucrose/water solution at several temperatures.Changes in temperature always were made from lower to higher to keep the sensor full of oil. Also, the shear-stress/ shear-rate curves were obtained by starting at high shear, down to zero, and then back up. SPEJ P. 679^


2012 ◽  
Vol 183-184 ◽  
pp. 37-51 ◽  
Author(s):  
Brahim Alibenyahia ◽  
Cécile Lemaitre ◽  
Chérif Nouar ◽  
Noureddine Ait-Messaoudene

1999 ◽  
Vol 13 (14n16) ◽  
pp. 1893-1900
Author(s):  
Fan Zhikang ◽  
Liang Shuhua ◽  
Xue Xu ◽  
Wang Gang

The rheological properties of an electrorheological(ER) fluid have been studied in a modified concentric cylinder viscometer. The results show that the relation of shear rate and shear stress is non-linear at certain shear rate defined as an original transition zone. Regressive analysis reveals that the ER fluid is of yield-pseudoplastic fluid in the transition zone. With increase in applied fields, the rheological properties of the ER fluid deviates from Newtonian fluid and the length of the transition zone becomes longer.


Author(s):  
Nariman Ashrafi

The effect of shear thinning on the stability of the Taylor-Couette flow (TCF) is explored for a Carreau-Bird fluid in the narrow-gap limit to simulate journal bearings in general. Also considered is the changing eccentricity to cover a wide range of applied situations such as bearings and even articulation of human joints. Here, a low-order dynamical system is obtained from the conservation of mass and momentum equations. In comparison with the Newtonian system, the present equations include additional nonlinear coupling in the velocity components through the viscosity. It is found that the critical Taylor number, corresponding to the loss of stability of the base (Couette) flow becomes lower s the shear-thinning effect increases. Similar to Newtonian fluids, there is an exchange of stability between the Couette and Taylor vortex flows. However, unlike the Newtonian model, the Taylor vortex cellular structure loses its stability in turn as the Taylor number reaches a critical value. At this point, A Hopf bifurcation emerges, which exists only for shear-thinning fluids. Variation of stresses in the narrow gap has been evaluated with significant applications in the non-Newtonian lubricant.


Sign in / Sign up

Export Citation Format

Share Document