scholarly journals Comparative Analysis of Peat Fibre Properties and Peat Fibre-Based Knits Flammability

2019 ◽  
Vol 19 (2) ◽  
pp. 157-164 ◽  
Author(s):  
Daiva Mikucioniene ◽  
Lina Cepukone ◽  
Khalifah A. Salmeia ◽  
Sabyasachi Gaan

Abstract A very promising cellulose-based natural fibre that is suitable for use in the textile industry is peat fibre. This fibre is a by-product of peat excavation, purified by separating it from other components. In this study, the morphological, chemical and mechanical properties of peat fibres as well as flammability of peat-based knitted fabrics were analysed. The average diameter of the peat fibres is ~60 μm, but it varies in very wide ranges – 25–150 μm; however, the number of fibres with diameter more than 100 μm is very low. As the peat fibre contains a high amount of lignin, lignin amount in the mixed peat/cotton yarn is relatively high too. Lignin is responsible for enhanced flame retardancy; therefore, time to ignition of the peat knit is ~30% higher than that of the cotton knit. Consequently, peat fibre can be used in the knitted structure in order to significantly reduce its flammability. In order to increase the flame retardancy, the knits have been treated by flame retardant in various concentrations. It was found that around the burned hole on the peat knit, treated by very low concentration flame retardant, forms charred area and the knit stops to burn even if the flame source is not removed.

RSC Advances ◽  
2015 ◽  
Vol 5 (21) ◽  
pp. 16328-16339 ◽  
Author(s):  
Rui-Min Li ◽  
Cong Deng ◽  
Cheng-Liang Deng ◽  
Liang-Ping Dong ◽  
Hong-Wei Di ◽  
...  

The water resistance, flame retardancy and mechanical properties of POE intumescent flame-retardant systems were improved simultaneously.


Polymers ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 741
Author(s):  
Zorana Kovačević ◽  
Sandra Flinčec Grgac ◽  
Sandra Bischof

This paper summarizes the results obtained in the course of the development of a specific group of biocomposites with high functionality of flame retardancy, which are environmentally acceptable at the same time. Conventional biocomposites have to be altered through different modifications, to be able to respond to the stringent standards and environmental requests of the circular economy. The most commonly produced types of biocomposites are those composed of a biodegradable PLA matrix and plant bast fibres. Despite of numerous positive properties of natural fibres, flammability of plant fibres is one of the most pronounced drawbacks for their wider usage in biocomposites production. Most recent novelties regarding the flame retardancy of nanocomposites are presented, with the accent on the agents of nanosize (nanofillers), which have been chosen as they have low or non-toxic environmental impact, but still offer enhanced flame retardant (FR) properties. The importance of a nanofiller’s geometry and shape (e.g., nanodispersion of nanoclay) and increase in polymer viscosity, on flame retardancy has been stressed. Although metal oxydes are considered the most commonly used nanofillers there are numerous other possibilities presented within the paper. Combinations of clay based nanofillers with other nanosized or microsized FR agents can significantly improve the thermal stability and FR properties of nanocomposite materials. Further research is still needed on optimizing the parameters of FR compounds to meet numerous requirements, from the improvement of thermal and mechanical properties to the biodegradability of the composite products. Presented research initiatives provide genuine new opportunities for manufacturers, consumers and society as a whole to create a new class of bionanocomposite materials with added benefits of environmental improvement.


RSC Advances ◽  
2021 ◽  
Vol 11 (49) ◽  
pp. 30943-30954
Author(s):  
Wei Peng ◽  
Yu-xuan Xu ◽  
Shi-bin Nie ◽  
Wei Yang

Phosphorus-containing flame retardants have received huge interest for improving the flame retardant behavior of epoxy resins (EP) over the past few decades.


RSC Advances ◽  
2015 ◽  
Vol 5 (61) ◽  
pp. 49143-49152 ◽  
Author(s):  
Ningjing Wu ◽  
Zhaoxia Xiu

Silicone-microencapsulated aluminum hypophosphite (SiAHP) improved effectively the flame retardancy and significantly enhanced the notched impact strength of ABS/SiAHP composites.


Materials ◽  
2020 ◽  
Vol 13 (5) ◽  
pp. 1251
Author(s):  
Yilin Liu ◽  
Bin Li ◽  
Miaojun Xu ◽  
Lili Wang

Ethylene vinyl acetate (EVA) copolymer has been used extensively in many fields. However, EVA is flammable and releases CO gas during burning. In this work, a composite flame retardant with ammonium polyphosphate (APP), a charring–foaming agent (CFA), and a layered double hydroxide (LDH) containing rare-earth elements (REEs) was obtained and used to improve the flame retardancy, thermal stability, and smoke suppression for an EVA matrix. The thermal analysis showed that the maximum thermal degradation temperature of all composites increased by more than 37 °C compared with that of pure EVA. S-LaMgAl/APP/CFA/EVA, S-CeMgAl/APP/CFA/EVA, and S-NdMgAl/APP/CFA/EVA could achieve self-extinguishing behavior according to the UL-94 tests (V-0 rating). The peak heat release rate (pk-HRR) indicated that all LDHs containing REEs obviously reduced the fire strength in comparison with S-MgAl. In particular, pk-HRR of S-LaMgAl/APP/CFA/EVA, S-CeMgAl/APP/CFA/EVA and S-NdMgAl/APP/CFA/EVA were all decreased by more than 82% in comparison with pure EVA. Furthermore, the total heat release (THR), smoke production rate (SPR), and production rate of CO (COP) also decreased significantly. The average mass loss rate (AMLR) confirmed that the flame retardant exerted an effect in the condensed phase of the composites. Meanwhile, the combination of APP, CFA, and LDH containing REEs allowed the EVA matrix to maintain good mechanical properties.


Materials ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 152 ◽  
Author(s):  
Nerea Pérez ◽  
Xiao-Lin Qi ◽  
Shibin Nie ◽  
Pablo Acuña ◽  
Ming-Jun Chen ◽  
...  

Polypropylene (PP) is currently widely used in areas requiring lightweight materials because of its low density. Due to the intrinsic flammability, the application of PP is restricted in many conditions. Aluminum trihydroxide (ATH) is reported as a practical flame retardant for PP, but the addition of ATH often diminishes the lightweight advantage of PP. Therefore, in this work, glass bubbles (GB) and octacedylamine-modified zirconium phosphate (mZrP) are introduced into the PP/ATH composite in order to lower the material density and simultaneously maintain/enhance the flame retardancy. A series of PP composites have been prepared to explore the formulation which can endow the composite with balanced flame retardancy, good mechanical properties, and low density. The morphology, thermal stability, flame retardancy, and mechanical properties of the composites were characterized. The results indicated the addition of GB could reduce the density, but decreased the flame retardancy of PP composites at the same time. To overcome this defect, ATH and mZrP with synergetic effect of flame retardancy were added into the composite. The dosage of each additive was optimized for achieving a balance of flame retardancy, good mechanical properties, and density. With 47 wt % ATH, 10 wt % GB, and 3 wt % mZrP, the peak heat release rate (pHRR) and total smoke production (TSP) of the composite PP-4 were reduced by 91% and 78%, respectively. At the same time, increased impact strength was achieved compared with neat PP and the composite with ATH only. Maintaining the flame retardancy and mechanical properties, the density of composite PP-4 (1.27 g·cm−3) is lower than that with ATH only (PP-1, 1.46 g·cm−3). Through this research, we hope to provide an efficient approach to designing flame retardant polypropylene (PP) composites with low density.


Sign in / Sign up

Export Citation Format

Share Document