Analysis of Structural Signals Conferring Localisation of Pig OST48 to the Endoplasmic Reticulum

2001 ◽  
Vol 382 (7) ◽  
pp. 1039-1047 ◽  
Author(s):  
Birgit Hardt ◽  
Raquel Aparicio ◽  
Wilhelm Breuer ◽  
Ernst Bause

Abstract Pig liver oligosaccharyltransferase (OST) is a heterooligomeric protein complex responsible for the cotranslational transfer of GlcNAc[2]Man[9]Glc[3] from Dol PP onto specific asparagine residues in the nascent polypeptide. OST48, one of the catalytic subunits in this complex, exerts a typical type I membrane topology, containing a large luminal domain, a hydrophobic transmembrane domain and a short cytosolic peptide tail. Because OST48 is found within the endoplasmic reticulum (ER) when overexpressed in COS-1 cells, we carried out experiments to identify structural signals potentially capable of directing ERtargeting, using OST48 mutants and hybrid proteins consisting of individual OST48 domains and Man[9] mannosidase. Immunofluorescence microscopy showed that OST48 mutants in which the Cterminal lysine-3 or lysine-5, but not lysine-7, had been replaced by leucine (OST48?K) could be detected on the cell surface. This indicates that these two lysine residues are sufficient for conferring ERresidency on OST48. The doublelysine motif operates only when exposed cytosolically, where it acts as a relocation signal rather than causing retention. OST48?K-3, when coexpressed in COS-1 cells together with myctagged ribophorin I, was quantitatively retained in the ER. By contrast, coexpression in the presence of ribophorin I resulted in no reduction of cell surface fluorescence for the OMO?K-5 chimera containing the cytosolic and transmembrane domain of OST48 attached to the Cterminus of the Man[9]mannosidase luminal domain. Thus ERlocalisation of OST48 is probably brought about by complex formation with ribophorin I and this most likely involves the luminal domains of both proteins. Consequently, the doublelysine motif in the cytosolic domain of OST48 is unlikely to have a primary function except being involved in recapture of molecules which have escaped from the ER.

1996 ◽  
Vol 319 (1) ◽  
pp. 131-136 ◽  
Author(s):  
Thomas FRIEDBERG ◽  
Romy HOLLER ◽  
Bettina LÖLLMANN ◽  
Michael ARAND ◽  
Franz OESCH

Diol epoxides formed by the sequential action of cytochrome P-450 and the microsomal epoxide hydrolase (mEH) in the endoplasmic reticulum (ER) represent an important class of ultimate carcinogenic metabolites of polycyclic aromatic hydrocarbons. The role of the membrane orientation of cytochrome P-450 and mEH relative to each other in this catalytic cascade is not known. Cytochrome P-450 is known to have a type I topology. According to the algorithm of Hartman, Rapoport and Lodish [(1989) Proc. Natl. Acad. Sci. U.S.A. 86, 5786–5790], which allows the prediction of the membrane topology of proteins, mEH should adopt a type II membrane topology. Experimentally, mEH membrane topology has been disputed. Here we demonstrate that, in contrast with the theoretical prediction, the rat mEH has exclusively a type I membrane topology. Moreover we show that this topology can be inverted without affecting the catalytic activity of mEH. Our conclusions are supported by the observation that two mEH constructs (mEHg1 and mEHg2), containing engineered potential glycosylation sites at two separate locations after the C-terminal site of the membrane anchor, were not glycosylated in fibroblasts. However, changing the net charge at the N-terminus of these engineered mEH proteins by +3 resulted in proteins (++mEHg1 and ++mEHg2) that became glycosylated and consequently had a type II topology. The sensitivity of these glycosylated proteins to endoglycosidase H indicated that, like the native mEH, they are still retained in the ER. The engineered mEH proteins were integrated into membranes as they were resistant to alkaline extraction. Interestingly, an insect mEH with a charge distribution in its N-terminus similar to ++mEHg1 has recently been isolated. This enzyme might well display a type II topology instead of the type I topology of the rat mEH. Importantly, mEHg1, having the natural cytosolic orientation, as well as ++mEHg1, having an artificial luminal orientation, displayed rather similar substrate turnovers for the mutagenic metabolite benzo[a]pyrene 4,5-oxide. To our knowledge this is the first report demonstrating that topological inversion of a protein within the membrane of the ER has only a moderate effect on its enzymic activity, despite differences in folding pathways and redox environments on each side of the membrane. This observation represents an important step in the evaluation of the influence of mEH membrane orientation in the cascade of events leading to the formation of ultimate carcinogenic metabolites, and for studying the general importance of metabolic channelling on the surface of membranes.


2000 ◽  
Vol 20 (11) ◽  
pp. 3831-3842 ◽  
Author(s):  
C. D. Hoemann ◽  
N. Beaulieu ◽  
L. Girard ◽  
N. Rebai ◽  
P. Jolicoeur

ABSTRACT We have previously characterized a large panel of provirus insertion Notch1 mutant alleles and their products arising in thymomas of MMTVD/myc transgenic mice. Here, we show that these Notch1 mutations represent two clearly distinct classes. In the first class (type I), proviral integrations were clustered just upstream of sequences encoding the transmembrane domain. Type I Notch1 alleles produced two types of mutantNotch1 RNA, one of which encoded the entire Notch1 cytoplasmic domain [N(IC)] and the other of which encoded a soluble ectodomain [N(EC)Mut] which, in contrast to the processed wild-type ectodomain [N(EC)WT], did not reside at the cell surface and became secreted in a temperature-dependent manner. A second, novel class of mutant Notch1 allele (type II) encoded a Notch1 receptor with the C-terminal PEST motif deleted (ΔCT). The type II Notch1ΔCT protein was expressed as a normally processed receptor [N(EC)WT and N(IC)ΔCT] at the cell surface, and its ectodomain was found to be shed into the extracellular medium in a temperature- and calcium-dependent manner. These data suggest that both type I and type II mutations generate two structurally distinct Notch1 N(EC) and N(IC) proteins that may participate in tumor formation, in collaboration with the c-myc oncogene, through distinct mechanisms. Constitutive type I N(IC) and type II N(IC)ΔCT expression may enhance Notch1 intracellular signaling, while secreted or shed type I N(EC)Mut and type II N(EC) proteins may differentially interact in an autocrine or paracrine fashion with ligands of Notch1 and affect their signaling.


1997 ◽  
Vol 110 (8) ◽  
pp. 991-1003 ◽  
Author(s):  
J. Boehm ◽  
F. Letourneur ◽  
W. Ballensiefen ◽  
D. Ossipov ◽  
C. Demolliere ◽  
...  

In Saccharomyces cerevisiae cells lacking the Rer1 protein (Rer1p), the type II transmembrane protein Sec12p fails to be retained in the ER. The transmembrane domain of Sec12p is sufficient to confer Rer1p-dependent ER retention to other membrane proteins. In rer1 mutants a large part of the Sec12-derived proteins can escape to the late Golgi. In contrast, rer3 mutants accumulate Sec12-derived hybrid proteins carrying early Golgi modifications. We found that rer3 mutants harbour unique alleles of the alpha-COP-encoding RET1 gene. ret1 mutants, along with other coatomer mutants, fail to retrieve KKXX-tagged type I transmembrane proteins from the Golgi back to the ER. Surprisingly rer3-11(=ret1-12) mutants do not affect this kind of ER recycling. Pulse-chase experiments using these mutants show that alpha-COP and Rer1p function together in a very early Golgi compartment to initiate the recycling of Sec12p-derived hybrid proteins. Rer1p protein may be directly involved in the retrieval process since it also recycles between the early Golgi and ER in a coatomer (COPI)-dependent manner. Rer1p may act as an adapter coupling the recycling of non-KKXX transmembrane proteins like Sec12p to the coatomer (COPI)-mediated backward traffic.


2004 ◽  
Vol 167 (3) ◽  
pp. 445-456 ◽  
Author(s):  
Yukio Kimata ◽  
Daisuke Oikawa ◽  
Yusuke Shimizu ◽  
Yuki Ishiwata-Kimata ◽  
Kenji Kohno

In the unfolded protein response, the type I transmembrane protein Ire1 transmits an endoplasmic reticulum (ER) stress signal to the cytoplasm. We previously reported that under nonstressed conditions, the ER chaperone BiP binds and represses Ire1. It is still unclear how this event contributes to the overall regulation of Ire1. The present Ire1 mutation study shows that the luminal domain possesses two subregions that seem indispensable for activity. The BiP-binding site was assigned not to these subregions, but to a region neighboring the transmembrane domain. Phenotypic comparison of several Ire1 mutants carrying deletions in the indispensable subregions suggests these subregions are responsible for multiple events that are prerequisites for activation of the overall Ire1 proteins. Unexpectedly, deletion of the BiP-binding site rendered Ire1 unaltered in ER stress inducibility, but hypersensitive to ethanol and high temperature. We conclude that in the ER stress-sensory system BiP is not the principal determinant of Ire1 activity, but an adjustor for sensitivity to various stresses.


2009 ◽  
Vol 424 (3) ◽  
pp. 375-384 ◽  
Author(s):  
Benedita A. Pinheiro ◽  
Harry J. Gilbert ◽  
Kazutaka Sakka ◽  
Kazuo Sakka ◽  
Vânia O. Fernandes ◽  
...  

Cellulosomes, synthesized by anaerobic microorganisms such as Clostridium thermocellum, are remarkably complex nanomachines that efficiently degrade plant cell wall polysaccharides. Cellulosome assembly results from the interaction of type I dockerin domains, present on the catalytic subunits, and the cohesin domains of a large non-catalytic integrating protein that acts as a molecular scaffold. In general, type I dockerins contain two distinct cohesin-binding interfaces that appear to display identical ligand specificities. Inspection of the C. thermocellum genome reveals 72 dockerin-containing proteins. In four of these proteins, Cthe_0258, Cthe_0435, Cthe_0624 and Cthe_0918, there are significant differences in the residues that comprise the two cohesin-binding sites of the type I dockerin domains. In addition, a protein of unknown function (Cthe_0452), containing a C-terminal cohesin highly similar to the equivalent domains present in C. thermocellum-integrating protein (CipA), was also identified. In the present study, the ligand specificities of the newly identified cohesin and dockerin domains are described. The results revealed that Cthe_0452 is located at the C. thermocellum cell surface and thus the protein was renamed as OlpC. The dockerins of Cthe_0258 and Cthe_0435 recognize, preferentially, the OlpC cohesin and thus these enzymes are believed to be predominantly located at the surface of the bacterium. By contrast, the dockerin domains of Cthe_0624 and Cthe_0918 are primarily cellulosomal since they bind preferentially to the cohesins of CipA. OlpC, which is a relatively abundant protein, may also adopt a ‘warehouse’ function by transiently retaining cellulosomal enzymes at the cell surface before they are assembled on to the multienzyme complex.


2019 ◽  
Author(s):  
Alison J. Inglis ◽  
Katharine R. Page ◽  
Alina Guna ◽  
Rebecca M. Voorhees

AbstractA large proportion of membrane proteins must be assembled into oligomeric complexes for function. How this process occurs is poorly understood, but it is clear that complex assembly must be tightly regulated to avoid accumulation of orphan subunits with potential cytotoxic effects. We interrogated assembly in mammalian cells using a model system of the WRB/CAML complex: an essential insertase for tail-anchored proteins in the endoplasmic reticulum (ER). Our data suggests that the stability of each subunit is differentially regulated. In WRB’s absence, CAML folds incorrectly, causing aberrant exposure of a hydrophobic transmembrane domain to the cytosol. When present, WRB can post-translationally correct the topology of CAML both in vitro and in cells. In contrast, WRB can independently fold correctly, but is still degraded in the absence of CAML. We therefore propose at least two distinct regulatory pathways for the surveillance of orphan subunits during complex assembly in the mammalian ER.


2008 ◽  
Vol 417 (1) ◽  
pp. 161-172 ◽  
Author(s):  
Meritxell Canals ◽  
Juan F. Lopez-Gimenez ◽  
Graeme Milligan

Many G-protein-coupled receptors, including the α1b-adrenoceptor, form homo-dimers or oligomers. Mutation of hydrophobic residues in transmembrane domains I and IV alters the organization of the α1b-adrenoceptor oligomer, with transmembrane domain IV playing a critical role. These mutations also result in endoplasmic reticulum trapping of the receptor. Following stable expression of this α1b-adrenoceptor mutant, cell surface delivery, receptor function and structural organization were recovered by treatment with a range of α1b-adrenoceptor antagonists that acted at the level of the endoplasmic reticulum. This was accompanied by maturation of the mutant receptor to a terminally N-glycosylated form, and only this mature form was trafficked to the cell surface. Co-expression of the mutant receptor with an otherwise wild-type form of the α1b-adrenoceptor that is unable to bind ligands resulted in this wild-type variant also being retained in the endoplasmic reticulum. Ligand-induced cell surface delivery of the mutant α1b-adrenoceptor now allowed co-recovery to the plasma membrane of the ligand-binding-deficient mutant. These results demonstrate that interactions between α1b-adrenoceptor monomers occur at an early stage in protein synthesis, that ligands of the α1b-adrenoceptor can act as pharmacological chaperones to allow a structurally compromised form of the receptor to pass cellular quality control, that the mutated receptor is not inherently deficient in function and that an oligomeric assembly of ligand-binding-competent and -incompetent forms of the α1b-adrenoceptor can be trafficked to the cell surface by binding of a ligand to only one component of the receptor oligomer.


1989 ◽  
Vol 108 (4) ◽  
pp. 1547-1556 ◽  
Author(s):  
S Saunders ◽  
M Jalkanen ◽  
S O'Farrell ◽  
M Bernfield

We describe cDNA clones for a cell surface proteoglycan that bears both heparan sulfate and chondroitin sulfate and that links the cytoskeleton to the interstitial matrix. The cDNA encodes a unique core protein of 32,868 D that contains several structural features consistent with its role as a glycosamino-glycan-containing matrix anchor. The sequence shows discrete cytoplasmic, transmembrane, and NH2-terminal extracellular domains, indicating that the molecule is a type I integral membrane protein. The cytoplasmic domain is small and similar in size but not in sequence to that of the beta-chain of various integrins. The extracellular domain contains a single dibasic sequence adjacent to the extracellular face of the transmembrane domain, potentially serving as the protease-susceptible site involved in release of this domain from the cell surface. The extracellular domain contains two distinct types of putative glycosaminoglycan attachment sites; one type shows sequence characteristics of the sites previously described for chondroitin sulfate attachment (Bourdon, M. A., T. Krusius, S. Campbell, N. B. Schwartz, and E. Ruoslahti. 1987. Proc. Natl. Acad. Sci. USA. 84:3194-3198), but the other type has newly identified sequence characteristics that potentially correspond to heparan sulfate attachment sites. The single N-linked sugar recognition sequence is within the putative chondroitin sulfate attachment sequence, suggesting asparagine glycosylation as a mechanism for regulating chondroitin sulfate chain addition. Both 5' and 3' regions of this cDNA have sequences substantially identical to analogous regions of the human insulin receptor cDNA: a 99-bp region spanning the 5' untranslated and initial coding sequences is 67% identical and a 35-bp region in the 3' untranslated region is 81% identical in sequence. mRNA expression is tissue specific; various epithelial tissues show the same two sizes of mRNA (2.6 and 3.4 kb); in the same relative abundance (3:1), the cerebrum shows a single 4.5-kb mRNA. This core protein cDNA describes a new class of molecule, an integral membrane proteoglycan, that we propose to name syndecan (from the Greek syndein, to bind together).


Parasitology ◽  
2005 ◽  
Vol 131 (2) ◽  
pp. 169-179 ◽  
Author(s):  
F. L. HENRIQUEZ ◽  
M. B. NICKDEL ◽  
R. MCLEOD ◽  
R. E. LYONS ◽  
K. LYONS ◽  
...  

Studies using antibodies to immunolocalize the Toxoplasma gondii dense granule protein GRA3, have shown that this protein associates strongly with the parasitophorous vacuole membrane (PVM). However, as there was no predicted membrane-spanning domain this highlighted an unanswered paradox. We demonstrate that the previously published sequence for GRA3 is actually an artificial chimera of 2 proteins. One protein, of molecular weight 65 kDa, shares the C-terminus with published GRA3 and possesses no significant sequence similarity with any protein thus far deposited in Genbank. The second, with a predicted molecular weight of 24 kDa shares the N-terminal region, is recognized by the monoclonal antibody 2H11 known to react with the dense granules of T. gondii and is therefore the authentic GRA3. The corrected GRA3 has an N-terminal secretory signal sequence and a transmembrane domain consistent with its insertion into the PVM. Antibodies to recombinant GRA3 recognize a protein of 24 kDa in T. gondii excretory–secretory antigen preparations. The signal peptide is necessary and sufficient to target GFP to the dense granules and parasitophorous vacuole. A homologue was identified in Neospora caninum. Finally, GRA3 possesses a dilysine ‘KKXX’ endoplasmic reticulum (ER) retrieval motif that rationalizes its association with PVM and possibly the host cell ER.


2001 ◽  
Vol 82 (1) ◽  
pp. 215-226 ◽  
Author(s):  
Ralf Nixdorf ◽  
Barbara G. Klupp ◽  
Thomas C. Mettenleiter

The cytoplasmic domains of several herpesviral glycoproteins encompass potential intracellular sorting signals. To analyse the function of the cytoplasmic domains of different pseudorabies virus (PrV) glycoproteins, hybrid proteins were constructed consisting of the extracellular and transmembrane domains of envelope glycoprotein D (gD) fused to the cytoplasmic tails of gB, gE or gM (designated gDB, gDE and gDM), all of which contain putative endocytosis motifs. gD is a type I membrane protein required for binding to and entry into target cells. Localization of hybrid proteins compared to full-length gB, gE and gM as well as carboxy-terminally truncated variants of gD was studied by confocal laser scanning microscopy. The function of gD hybrids was assayed by trans-complementation of a gD-negative PrV mutant. The carboxy-terminal domains of gB and gM directed a predominantly intracellular localization of gDB and gDM, while full-length gD and a tail-less gD mutant (gDc) were preferentially expressed on the cell surface. In contrast gDE, and a gDB lacking the putative gB endocytosis signal (gDBΔ29), were predominantly located in the plasma membrane. Despite the different intracellular localization, all tested proteins were able to complement infectivity of a PrV gD− mutant. Cells which stably express full-length gD and plasma-membrane-associated gD hybrids exhibit a significant resistance to PrV infection, while cells expressing predominantly intracellularly located forms do not. This suggests that the assumed sequestration of receptors by gD, which is supposed to be responsible for the interference phenomenon, occurs at the cell surface.


Sign in / Sign up

Export Citation Format

Share Document