scholarly journals Differential modes of orphan subunit recognition for the WRB/CAML complex

2019 ◽  
Author(s):  
Alison J. Inglis ◽  
Katharine R. Page ◽  
Alina Guna ◽  
Rebecca M. Voorhees

AbstractA large proportion of membrane proteins must be assembled into oligomeric complexes for function. How this process occurs is poorly understood, but it is clear that complex assembly must be tightly regulated to avoid accumulation of orphan subunits with potential cytotoxic effects. We interrogated assembly in mammalian cells using a model system of the WRB/CAML complex: an essential insertase for tail-anchored proteins in the endoplasmic reticulum (ER). Our data suggests that the stability of each subunit is differentially regulated. In WRB’s absence, CAML folds incorrectly, causing aberrant exposure of a hydrophobic transmembrane domain to the cytosol. When present, WRB can post-translationally correct the topology of CAML both in vitro and in cells. In contrast, WRB can independently fold correctly, but is still degraded in the absence of CAML. We therefore propose at least two distinct regulatory pathways for the surveillance of orphan subunits during complex assembly in the mammalian ER.

Biology ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 525
Author(s):  
Laerte Marlon Conceição dos Santos ◽  
Eduardo Santos da Silva ◽  
Fabricia Oliveira Oliveira ◽  
Leticia de Alencar Pereira Rodrigues ◽  
Paulo Roberto Freitas Neves ◽  
...  

O3 dissolved in water (or ozonized water) has been considered a potent antimicrobial agent, and this study aimed to test this through microbiological and in vitro assays. The stability of O3 was accessed following modifications of the physicochemical parameters of water, such as the temperature and pH, with or without buffering. Three concentrations of O3 (0.4, 0.6, and 0.8 ppm) dissolved in water were tested against different microorganisms, and an analysis of the cytotoxic effects was also conducted using the human ear fibroblast cell line (Hfib). Under the physicochemical conditions of 4 °C and pH 5, O3 remained the most stable and concentrated compared to pH 7 and water at 25 °C. Exposure to ozonized water resulted in high mortality rates for Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, Enterococcus faecalis, and Candida albicans. Scanning electron micrograph images indicate that the effects on osmotic stability due to cell wall lysis might be one of the killing mechanisms of ozonized water. The biocidal agent was biocompatible and presented no cytotoxic effect against Hfib cells. Therefore, due to its cytocompatibility and biocidal action, ozonized water can be considered a viable alternative for microbial control, being possible, for example, its use in disinfection processes.


1978 ◽  
Vol 37 (3) ◽  
pp. 386-396 ◽  
Author(s):  
A G Levis ◽  
V Bianchi ◽  
G Tamino ◽  
B Pegoraro

Biomedicines ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 384
Author(s):  
Myriam Salameh ◽  
Sylvie Riquier ◽  
Olivier Guittet ◽  
Meng-Er Huang ◽  
Laurence Vernis ◽  
...  

Human CISD2 and mitoNEET are two NEET proteins anchored in the endoplasmic reticulum and mitochondria membranes respectively, with an Fe–S containing domain stretching out in the cytosol. Their cytosolic domains are close in sequence and structure. In the present study, combining cellular and biochemical approaches, we compared both proteins in order to possibly identify specific roles and mechanisms of action in the cell. We show that both proteins exhibit a high intrinsic stability and a sensitivity of their cluster to oxygen. In contrast, they differ in according to expression profiles in tissues and intracellular half-life. The stability of their Fe–S cluster and its ability to be transferred in vitro are affected differently by pH variations in a physiological and pathological range for cytosolic pH. Finally, we question a possible role for CISD2 in cellular Fe–S cluster trafficking. In conclusion, our work highlights unexpected major differences in the cellular and biochemical features between these two structurally close NEET proteins.


Materials ◽  
2017 ◽  
Vol 10 (12) ◽  
pp. 1427 ◽  
Author(s):  
Agmal Scherzad ◽  
Till Meyer ◽  
Norbert Kleinsasser ◽  
Stephan Hackenberg

Background: Zinc oxide nanoparticles (ZnO NPs) are among the most frequently applied nanomaterials in consumer products. Evidence exists regarding the cytotoxic effects of ZnO NPs in mammalian cells; however, knowledge about the potential genotoxicity of ZnO NPs is rare, and results presented in the current literature are inconsistent. Objectives: The aim of this review is to summarize the existing data regarding the DNA damage that ZnO NPs induce, and focus on the possible molecular mechanisms underlying genotoxic events. Methods: Electronic literature databases were systematically searched for studies that report on the genotoxicity of ZnO NPs. Results: Several methods and different endpoints demonstrate the genotoxic potential of ZnO NPs. Most publications describe in vitro assessments of the oxidative DNA damage triggered by dissoluted Zn2+ ions. Most genotoxicological investigations of ZnO NPs address acute exposure situations. Conclusion: Existing evidence indicates that ZnO NPs possibly have the potential to damage DNA. However, there is a lack of long-term exposure experiments that clarify the intracellular bioaccumulation of ZnO NPs and the possible mechanisms of DNA repair and cell survival.


1999 ◽  
Vol 112 (6) ◽  
pp. 845-854 ◽  
Author(s):  
A.C. Valdez ◽  
J.P. Cabaniols ◽  
M.J. Brown ◽  
P.A. Roche

SNARE proteins are known to play a role in regulating intracellular protein transport between donor and target membranes. This docking and fusion process involves the interaction of specific vesicle-SNAREs (e.g. VAMP) with specific cognate target-SNAREs (e.g. syntaxin and SNAP-23). Using human SNAP-23 as the bait in a yeast two-hybrid screen of a human B-lymphocyte cDNA library, we have identified the 287-amino-acid SNARE protein syntaxin 11. Like other syntaxin family members, syntaxin 11 binds to the SNARE proteins VAMP and SNAP-23 in vitro and also exists in a complex with SNAP-23 in transfected HeLa cells and in native human B lymphocytes. Unlike other syntaxin family members, no obvious transmembrane domain is present in syntaxin 11. Nevertheless, syntaxin 11 is predominantly membrane-associated and colocalizes with the mannose 6-phosphate receptor on late endosomes and the trans-Golgi network. These data suggest that syntaxin 11 is a SNARE that acts to regulate protein transport between late endosomes and the trans-Golgi network in mammalian cells.


1999 ◽  
Vol 112 (4) ◽  
pp. 515-523
Author(s):  
L. McLaughlin ◽  
B. Burchell ◽  
M. Pritchard ◽  
C.R. Wolf ◽  
T. Friedberg

Some xenobiotics induce membrane-bound drug metabolizing enzymes (Xme) and a profound proliferation of the endoplasmic reticulum (ER) in vivo. However these effects are much weaker in vitro, possibly due to absence of certain transcription factors. We tested the possibility that ER proliferation can affect the level of ER-resident enzymes even in the absence of transcriptional activation. For this purpose we analysed the effects of compactin, which has been shown to induce ER proliferation in vitro, on recombinant Xme, which were expressed from a constitutive viral promoter. High levels of recombinant UDP-glucuronosyltransferase UGT1A6 were achieved by amplification of the UGT1A6 cDNA using the dihydrofolate reductase cDNA as selectable marker in DHFR- CHO cells. Treatment of the resulting cell lines with lipoprotein-deficient serum in the absence and presence of compactin for 5 days resulted in a 1.3- and 2.3-fold, respectively, increase of the UGT enzyme activity towards 4-methylumbelliferone, paralleled by an induction of immunoreactive UGT1A6 protein. Similarly, treatment with this 3-hydroxy-3-methylglutaryl-CoA reductase inhibitor increased the endogenous P450 reductase activity 2.6-fold, concomitant with an increase of immunodetectable protein. As expected compactin induced the level of 3-hydroxy-3-methylglutaryl-CoA reductase. Increased levels of this protein have been associated with a proliferation of the ER. Compactin treatment of a separate cell line that expressed recombinant human P450 reductase increased this enzyme activity fivefold. Pulse-chase experiments revealed that the induction of the recombinant Xme by compactin was most likely due to decreased protein degradation. Our results show that enzyme systems unrelated to those involved in cholesterol biosynthesis are affected by compounds known to affect membrane biogenesis. Since this effect extends to heterologously expressed enzymes, it also provides an efficient means by which to increase the levels of recombinant ER proteins.


2001 ◽  
Vol 382 (7) ◽  
pp. 1039-1047 ◽  
Author(s):  
Birgit Hardt ◽  
Raquel Aparicio ◽  
Wilhelm Breuer ◽  
Ernst Bause

Abstract Pig liver oligosaccharyltransferase (OST) is a heterooligomeric protein complex responsible for the cotranslational transfer of GlcNAc[2]Man[9]Glc[3] from Dol PP onto specific asparagine residues in the nascent polypeptide. OST48, one of the catalytic subunits in this complex, exerts a typical type I membrane topology, containing a large luminal domain, a hydrophobic transmembrane domain and a short cytosolic peptide tail. Because OST48 is found within the endoplasmic reticulum (ER) when overexpressed in COS-1 cells, we carried out experiments to identify structural signals potentially capable of directing ERtargeting, using OST48 mutants and hybrid proteins consisting of individual OST48 domains and Man[9] mannosidase. Immunofluorescence microscopy showed that OST48 mutants in which the Cterminal lysine-3 or lysine-5, but not lysine-7, had been replaced by leucine (OST48?K) could be detected on the cell surface. This indicates that these two lysine residues are sufficient for conferring ERresidency on OST48. The doublelysine motif operates only when exposed cytosolically, where it acts as a relocation signal rather than causing retention. OST48?K-3, when coexpressed in COS-1 cells together with myctagged ribophorin I, was quantitatively retained in the ER. By contrast, coexpression in the presence of ribophorin I resulted in no reduction of cell surface fluorescence for the OMO?K-5 chimera containing the cytosolic and transmembrane domain of OST48 attached to the Cterminus of the Man[9]mannosidase luminal domain. Thus ERlocalisation of OST48 is probably brought about by complex formation with ribophorin I and this most likely involves the luminal domains of both proteins. Consequently, the doublelysine motif in the cytosolic domain of OST48 is unlikely to have a primary function except being involved in recapture of molecules which have escaped from the ER.


2008 ◽  
Vol 182 (5) ◽  
pp. 911-924 ◽  
Author(s):  
Daniel J. Anderson ◽  
Martin W. Hetzer

During mitosis in metazoans, segregated chromosomes become enclosed by the nuclear envelope (NE), a double membrane that is continuous with the endoplasmic reticulum (ER). Recent in vitro data suggest that NE formation occurs by chromatin-mediated reorganization of the tubular ER; however, the basic principles of such a membrane-reshaping process remain uncharacterized. Here, we present a quantitative analysis of nuclear membrane assembly in mammalian cells using time-lapse microscopy. From the initial recruitment of ER tubules to chromatin, the formation of a membrane-enclosed, transport-competent nucleus occurs within ∼12 min. Overexpression of the ER tubule-forming proteins reticulon 3, reticulon 4, and DP1 inhibits NE formation and nuclear expansion, whereas their knockdown accelerates nuclear assembly. This suggests that the transition from membrane tubules to sheets is rate-limiting for nuclear assembly. Our results provide evidence that ER-shaping proteins are directly involved in the reconstruction of the nuclear compartment and that morphological restructuring of the ER is the principal mechanism of NE formation in vivo.


2005 ◽  
Vol 16 (2) ◽  
pp. 835-848 ◽  
Author(s):  
Lori Kapetanovich ◽  
Cassandra Baughman ◽  
Tina H. Lee

The cytosolic coat protein complex II (COPII) mediates vesicle formation from the endoplasmic reticulum (ER) and is essential for ER-to-Golgi trafficking. The minimal machinery for COPII assembly is well established. However, additional factors may regulate the process in mammalian cells. Here, a morphological COPII assembly assay using purified COPII proteins and digitonin-permeabilized cells has been applied to demonstrate a role for a novel component of the COPII assembly pathway. The factor was purified and identified by mass spectrometry as Nm23H2, one of eight isoforms of nucleoside diphosphate kinase in mammalian cells. Importantly, recombinant Nm23H2, as well as a catalytically inactive version, promoted COPII assembly in vitro, suggesting a noncatalytic role for Nm23H2. Consistent with a function for Nm23H2 in ER export, Nm23H2 localized to a reticular network that also stained for the ER marker calnexin. Finally, an in vivo role for Nm23H2 in COPII assembly was confirmed by isoform-specific knockdown of Nm23H2 by using short interfering RNA. Knockdown of Nm23H2, but not its most closely related isoform Nm23H1, resulted in diminished COPII assembly at steady state and reduced kinetics of ER export. These results strongly suggest a previously unappreciated role for Nm23H2 in mammalian ER export.


Sign in / Sign up

Export Citation Format

Share Document