Conformation and stability of the Streptococcus pyogenes pSM19035-encoded site-specific β recombinase, and identification of a folding intermediate

2006 ◽  
Vol 387 (5) ◽  
pp. 525-533 ◽  
Author(s):  
Anshul Bhardwaj ◽  
Karin Welfle ◽  
Rolf Misselwitz ◽  
Silvia Ayora ◽  
Juan C. Alonso ◽  
...  

Abstract Solution properties of β recombinase were studied by circular dichroism and fluorescence spectroscopy, size exclusion chromatography, analytical ultracentrifugation, denaturant-induced unfolding and thermal unfolding experiments. In high ionic strength buffer (1 M NaCl) β recombinase forms mainly dimers, and strongly tends to aggregate at ionic strength lower than 0.3 M NaCl. Urea and guanidinium chloride denaturants unfold β recombinase in a two-step process. The unfolding curves have bends at approximately 5 M and 2.2 M in urea and guanidinium chloride-containing buffers. Assuming a three-state unfolding model (N2→2I→2U), the total free energy change from 1 mol of native dimers to 2 mol of unfolded monomers amounts to ΔG tot=17.9 kcal/mol, with ΔG N2→2I=4.2 kcal/mol for the first transition and ΔG I→U=6.9 kcal/mol for the second transition. Using sedimentation-equilibrium analytical ultracentrifugation, the presence of β recombinase monomers was indicated at 5 M urea, and the urea dependence of the circular dichroism at 222 nm strongly suggests that folded monomers represent the unfolding intermediate.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yudong Lu ◽  
Lionard Joosten ◽  
Jacqueline Donkers ◽  
Fabrizio Andriulo ◽  
Ted M. Slaghek ◽  
...  

AbstractLignins are valuable renewable resources for the potential production of a large array of biofuels, aromatic chemicals and biopolymers. Yet native and industrial lignins are complex, highly branched and heterogenous macromolecules, properties that have to date often undermined their use as starting materials in lignin valorisation strategies. Reliable knowledge of weight average molar mass, conformation and polydispersity of lignin starting materials can be proven to be crucial to and improve the prospects for the success of such strategies. Here we evaluated the use of commonly-used size exclusion chromatography (SEC)—calibrated with polystyrene sulphonate standards—and under-used analytical ultracentrifugation—which does not require calibration—to characterise a series of lignin fractions sequentially extracted from soda and Kraft alkaline lignins using ethyl acetate, methyl ethyl ketone (MEK), methanol and acetone:water (fractions F01–F04, respectively). Absolute values of weight average molar mass (Mw) determined using sedimentation equilibrium in the analytical ultracentrifuge of (3.0 ± 0.1) kDa and (4.2 ± 0.2) kDa for soda and Kraft lignins respectively, agreed closely with previous SEC-determined Mws and reasonably with the size exclusion chromatography measurements employed here, confirming the appropriateness of the standards (with the possible exceptions of fraction F05 for soda P1000 and F03 for Indulin). Both methods revealed the presence of low (~ 1 kDa) Mw material in F01 and F02 fractions followed by progressively higher Mw in subsequent fractions. Compositional analysis confirmed > 90% (by weight) total lignins successively extracted from both lignins using MEK, methanol and acetone:water (F02 to F04). Considerable heterogeneity of both unfractionated and fractionated lignins was revealed through determinations of both sedimentation coefficient distributions and polydispersity indices. The study also demonstrates the advantages of using analytical ultracentrifugation, both alongside SEC as well as in its own right, for determining absolute Mw, heterogeneity and conformation information for characterising industrial lignins.


2019 ◽  
Vol 27 (1) ◽  
pp. 74-84
Author(s):  
Jessica Tamayo-Nuñez ◽  
Javier de la Mora ◽  
Felipe Padilla-Vaca ◽  
Naurú Idalia Vargas-Maya ◽  
Ángeles Rangel-Serrano ◽  
...  

Background: Marine sessile organisms display a color palette that is the result of the expression of fluorescent and non-fluorescent proteins. Fluorescent proteins have uncovered transcriptional regulation, subcellular localization of proteins, and the fate of cells during development. Chromoproteins have received less attention until recent years as bioreporters. Here, we studied the properties of aeBlue, a a 25.91 kDa protein from the anemone Actinia equina. Objective: To assess the properties of aeBlue chromoprotein under different physicochemical conditions. Method: In this article, during the purification of aeBlue we uncovered that it suffered a color shift when frozen. We studied the color shift by different temperature incubation and physicochemical conditions and light spectroscopy. To assess the possible structural changes in the protein, circular dichroism analysis, size exclusion chromatography and native PAGE was performed. Results: We uncover that aeBlue chromoprotein, when expressed from a synthetic construct in Escherichia coli, showed a temperature dependent color shift. Protein purified at 4 °C by metal affinity chromatography exhibited a pinkish color and shifts back at higher temperatures to its intense blue color. Circular dichroism analysis revealed that the structure in the pink form of the protein has reduced secondary structure at 4 °C, but at 35 °C and higher, the structure shifts to a native conformation and Far UV- vis CD spectra revealed the shift in an aromatic residue of the chromophore. Also, the chromophore retains its properties in a wide range of conditions (pH, denaturants, reducing and oxidants agents). Quaternary structure is also maintained as a tetrameric conformation as shown by native gel and size exclusion chromatography. Conclusion: Our results suggest that the chromophore position in aeBlue is shifted from its native position rendering the pink color and the process to return it to its native blue conformation is temperature dependent.


1987 ◽  
Vol 65 (12) ◽  
pp. 1039-1048 ◽  
Author(s):  
William C. McCubbin ◽  
Cyril M. Kay ◽  
Theresa D. Kennedy ◽  
Byron G. Lane

The size and structure of germin, the homooligomeric glycoprotein which marks the onset of growth in germinating wheat embryos, has been examined by gel filtration, ultracentrifugation, electron microscopy, chemical cross-linking, and optical techniques (circular dichroism). Germin has a sedimentation coefficient (S20,w) of 7.3S, and a Stokes' radius (RS) of 4.5 nm, the latter value being compatible with the dimensions of the particle observed by negative staining in the electron microscope. By three methods (sedimentation equilibrium, sodium dodecyl sulphate (SDS) – polyacrylamide electrophoresis, S20,w/RS), the mean particle mass of the two closely related forms of germin (G and G′) is ca. 130 kilodaltons (kDa). Cross-linking with dimethyl suberimidate indicates that the oligomer is homopentameric, compatible with the molecular mass of the protomer (ca. 26 kDa) as determined by SDS–polyacrylamide gel electrophoresis. Using the Provencher and Glockner analysis to interpret circular dichroism measurements (in the far ultraviolet), both forms of germin contain about 10–20% α-helical structure, 50–60% β-sheet/turn structure, and 20–30% random coil. In a structure-inducing environment (45% trifluoroethanol), the α-helical structure increases to a value (35–40%) similar to that predicted by Chou–Fasman analysis of the protein sequence deduced by cDNA sequencing.


1984 ◽  
Vol 62 (1) ◽  
pp. 44-48 ◽  
Author(s):  
A. T. Gudkov ◽  
S. Yu Venyaminov ◽  
A. T. Matheson

Physical studies on the effect of temperature and ionic conditions on the secondary, tertiary, and quaternary structure of the ribosomal "A" protein, equivalent to L7/L12 in Escherichia coli, from two archaebacteria were performed using circular dichroism and sedimentation equilibrium measurements. The two archaebacteria investigated were Halobacterium cutirubrum, an extreme halophile, and Methanobacterium thermoautotrophicum, a thermophile which also showed properties of a moderate halophile. The changes in the secondary structure and the thermostability of these proteins were directly related to the internal salt concentrations of the two archaebacteria. At the higher salt concentrations the changes in the secondary structure resulted in changes in the tertiary and quaternary structure of these proteins.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Morgane Agez ◽  
Elodie Desuzinges Mandon ◽  
Thomas Iwema ◽  
Reto Gianotti ◽  
Florian Limani ◽  
...  

Abstract CD20 is a B-lymphocyte specific integral membrane protein, an activated-glycosylated phosphoprotein expressed on the surface of B-cells and a clinically validated target of monoclonal antibodies such as rituximab, ocrelizumab, ofatumumab and obinutuzumab in the treatment of all B cell lymphomas and leukemias as well as autoimmune diseases. Here, we report the extraction and purification of native CD20 from SUDHL4 and RAMOS cell lines. To improve the protein yield, we applied a calixarene-based detergent approach to solubilize, stabilize and purify native CD20 from HEK293 cells. Size Exclusion Chromatography (SEC) and Analytical Ultracentrifugation show that purified CD20 was non-aggregated and that CD20 oligomerization is concentration dependent. Negative stain electron microscopy and atomic force microscopy revealed homogenous populations of CD20. However, no defined structure could be observed. Interestingly, micellar solubilized and purified CD20 particles adopt uniformly confined nanodroplets which do not fuse and aggregate. Finally, purified CD20 could bind to rituximab and obinutuzumab as demonstrated by SEC, and Surface Plasmon Resonance (SPR). Specificity of binding was confirmed using CD20 antibody mutants to human B-cell lymphoma cells. The strategy described in this work will help investigate CD20 binding with newly developed antibodies and eventually help to optimize them. This approach may also be applicable to other challenging membrane proteins.


2000 ◽  
Vol 39 (Part 1, No. 10) ◽  
pp. 6089-6093 ◽  
Author(s):  
Kenji Matsumoto ◽  
Fumikazu Saito ◽  
Takeshi Toyoda ◽  
Koichi Ohkubo ◽  
Koji Yamawaki ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document