scholarly journals The rhodanese RhdA helps Azotobacter vinelandii in maintaining cellular redox balance

2010 ◽  
Vol 391 (7) ◽  
Author(s):  
William Remelli ◽  
Angelo Cereda ◽  
Jutta Papenbrock ◽  
Fabio Forlani ◽  
Silvia Pagani

AbstractThe tandem domain rhodanese-homology protein RhdA ofAzotobacter vinelandiishows an active-site loop structure that confers structural peculiarity in the environment of its catalytic cysteine residue. Thein vivoeffects of the lack of RhdA were investigated using anA. vinelandiimutant strain (MV474) in which therhdAgene was disrupted by deletion. Here, by combining analytical measurements and transcript profiles, we show that deletion of therhdAgene generates an oxidative stress condition to whichA. vinelandiiresponds by activating defensive mechanisms. In conditions of growth in the presence of the superoxide generator phenazine methosulfate, a stressor-dependent induction ofrhdAgene expression was observed, thus highlighting that RhdA is important forA. vinelandiito sustain oxidative stress. The potential of RhdA to buffer general levels of oxidants inA. vinelandiicells via redox reactions involving its cysteine thiol is discussed.

Antioxidants ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 489
Author(s):  
Lauren E. Adams ◽  
Hunter G. Moss ◽  
Danielle W. Lowe ◽  
Truman Brown ◽  
Donald B. Wiest ◽  
...  

Therapeutic hypothermia does not improve outcomes in neonatal hypoxia ischemia (HI) complicated by perinatal infection, due to well-described, pre-existing oxidative stress and neuroinflammation that shorten the therapeutic window. For effective neuroprotection post-injury, we must first define and then target CNS metabolomic changes immediately after endotoxin-sensitized HI (LPS-HI). We hypothesized that LPS-HI would acutely deplete reduced glutathione (GSH), indicating overwhelming oxidative stress in spite of hypothermia treatment in neonatal rats. Post-natal day 7 rats were randomized to sham ligation, or severe LPS-HI (0.5 mg/kg 4 h before right carotid artery ligation, 90 min 8% O2), followed by hypothermia alone or with N-acetylcysteine (25 mg/kg) and vitamin D (1,25(OH)2D3, 0.05 μg/kg) (NVD). We quantified in vivo CNS metabolites by serial 7T MR Spectroscopy before, immediately after LPS-HI, and after treatment, along with terminal plasma drug concentrations. GSH was significantly decreased in all LPS-HI rats compared with baseline and sham controls. Two hours of hypothermia alone did not improve GSH and allowed glutamate + glutamine (GLX) to increase. Within 1 h of administration, NVD increased GSH close to baseline and suppressed GLX. The combination of NVD with hypothermia rapidly improved cellular redox status after LPS-HI, potentially inhibiting important secondary injury cascades and allowing more time for hypothermic neuroprotection.


2018 ◽  
Vol 2018 ◽  
pp. 1-17 ◽  
Author(s):  
Olga O. Gonchar ◽  
Andriy V. Maznychenko ◽  
Nataliya V. Bulgakova ◽  
Inna V. Vereshchaka ◽  
Tomasz Tomiak ◽  
...  

The effects of C60FAS (50 and 500 μg/kg) supplementation, in a normal physiological state and after restraint stress exposure, on prooxidant/antioxidant balance in rat tissues were explored and compared with the effects of the known exogenous antioxidant N-acetylcysteine. Oxidative stress biomarkers (ROS, O2⋅−, H2O2, and lipid peroxidation) and indices of antioxidant status (MnSOD, catalase, GPx, GST, γ-GCL, GR activities, and GSH level) were measured in the brain and the heart. In addition, protein expression of Nrf2 in the nuclear and cytosol fractions as well as the protein level of antiradical enzyme MnSOD and GSH-related enzymes γ-GCLC, GPx, and GSTP as downstream targets of Nrf2 was evaluated by western blot analysis. Under a stress condition, C60FAS attenuates ROS generation and O2⋅− and H2O2 releases and thus decreases lipid peroxidation as well as increases rat tissue antioxidant capacity. We have shown that C60FAS supplementation has dose-dependent and tissue-specific effects. C60FAS strengthened the antiradical defense through the upregulation of MnSOD in brain cells and maintained MnSOD protein content at the control level in the myocardium. Moreover, C60FAS enhanced the GSH level and the activity/protein expression of GSH-related enzymes. Correlation of these changes with Nrf2 protein content suggests that under stress exposure, along with other mechanisms, the Nrf2/ARE-antioxidant pathway may be involved in regulation of glutathione homeostasis. In our study, in an in vivo model, when C60FAS (50 and 500 μg/kg) was applied alone, no significant changes in Nrf2 protein expression as well as in activity/protein levels of MnSOD and GSH-related enzymes in both tissues types were observed. All these facts allow us to assume that in the in vivo model, C60FAS affects on the brain and heart endogenous antioxidative statuses only during the oxidative stress condition.


2019 ◽  
Vol 116 (19) ◽  
pp. 9433-9442 ◽  
Author(s):  
Jonathan K. M. Lim ◽  
Alberto Delaidelli ◽  
Sean W. Minaker ◽  
Hai-Feng Zhang ◽  
Milena Colovic ◽  
...  

The RAS family of proto-oncogenes are among the most commonly mutated genes in human cancers and predict poor clinical outcome. Several mechanisms underlying oncogenic RAS transformation are well documented, including constitutive signaling through the RAF-MEK-ERK proproliferative pathway as well as the PI3K-AKT prosurvival pathway. Notably, control of redox balance has also been proposed to contribute to RAS transformation. However, how homeostasis between reactive oxygen species (ROS) and antioxidants, which have opposing effects in the cell, ultimately influence RAS-mediated transformation and tumor progression is still a matter of debate and the mechanisms involved have not been fully elucidated. Here, we show that oncogenic KRAS protects fibroblasts from oxidative stress by enhancing intracellular GSH levels. Using a whole transcriptome approach, we discovered that this is attributable to transcriptional up-regulation of xCT, the gene encoding the cystine/glutamate antiporter. This is in line with the function of xCT, which mediates the uptake of cystine, a precursor for GSH biosynthesis. Moreover, our results reveal that the ETS-1 transcription factor downstream of the RAS-RAF-MEK-ERK signaling cascade directly transactivates the xCT promoter in synergy with the ATF4 endoplasmic reticulum stress-associated transcription factor. Strikingly, xCT was found to be essential for oncogenic KRAS-mediated transformation in vitro and in vivo by mitigating oxidative stress, as knockdown of xCT strongly impaired growth of tumor xenografts established from KRAS-transformed cells. Overall, this study uncovers a mechanism by which oncogenic RAS preserves intracellular redox balance and identifies an unexpected role for xCT in supporting RAS-induced transformation and tumorigenicity.


Antioxidants ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1117
Author(s):  
Theresa Wolfram ◽  
Maria Schwarz ◽  
Michaela Reuß ◽  
Kristina Lossow ◽  
Mario Ost ◽  
...  

N-acetylcysteine (NAC) is a frequently prescribed drug and known for its metal chelating capability. However, to date it is not well characterized whether NAC intake affects the homeostasis of essential trace elements. As a precursor of glutathione (GSH), NAC also has the potential to modulate the cellular redox homeostasis. Thus, we aimed to analyze effects of acute and chronic NAC treatment on the homeostasis of copper (Cu) and zinc (Zn) and on the activity of the redox-sensitive transcription factor Nrf2. Cells were exposed to 1 mM NAC and were co-treated with 50 μM Cu or Zn. We showed that NAC treatment reduced the cellular concentration of Zn and Cu. In addition, NAC inhibited the Zn-induced Nrf2 activation and limited the concomitant upregulation of cellular GSH concentrations. In contrast, mice chronically received NAC via drinking water (1 g NAC/100 mL). Cu and Zn concentrations were decreased in liver and spleen. In the duodenum, NQO1, TXNRD, and SOD activities were upregulated by NAC. All of them can be induced by Nrf2, thus indicating a putative Nrf2 activation. Overall, NAC modulates the homeostasis of Cu and Zn both in vitro and in vivo and accordingly affects the cellular redox balance.


Antioxidants ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1156
Author(s):  
Sajan George ◽  
Heidi Abrahamse

The benevolent and detrimental effects of antioxidants are much debated in clinical trials and cancer research. Several antioxidant enzymes and molecules are overexpressed in oxidative stress conditions that can damage cellular proteins, lipids, and DNA. Natural antioxidants remove excess free radical intermediates by reducing hydrogen donors or quenching singlet oxygen and delaying oxidative reactions in actively growing cancer cells. These reducing agents have the potential to hinder cancer progression only when administered at the right proportions along with chemo-/radiotherapies. Antioxidants and enzymes affect signal transduction and energy metabolism pathways for the maintenance of cellular redox status. A decline in antioxidant capacity arising from genetic mutations may increase the mitochondrial flux of free radicals resulting in misfiring of cellular signalling pathways. Often, a metabolic reprogramming arising from these mutations in metabolic enzymes leads to the overproduction of so called ’oncometabolites’ in a state of ‘pseudohypoxia’. This can inactivate several of the intracellular molecules involved in epigenetic and redox regulations, thereby increasing oxidative stress giving rise to growth advantages for cancerous cells. Undeniably, these are cell-type and Reactive Oxygen Species (ROS) specific, which is manifested as changes in the enzyme activation, differences in gene expression, cellular functions as well as cell death mechanisms. Photodynamic therapy (PDT) using light-activated photosensitizing molecules that can regulate cellular redox balance in accordance with the changes in endogenous ROS production is a solution for many of these challenges in cancer therapy.


2020 ◽  
Vol 9 (11) ◽  
pp. 3124-3133
Author(s):  
Sarah Maxel ◽  
Edward King ◽  
Yulai Zhang ◽  
Ray Luo ◽  
Han Li

2020 ◽  
Vol 16 (3) ◽  
pp. 284-293
Author(s):  
George Laylson da Silva Oliveira ◽  
Maria das Dores Alves de Oliveira ◽  
Maria da Conceição Oliveira Prado ◽  
Alexandre de Barros Falcão Ferraz ◽  
José Carlos Correia Lima da Silva ◽  
...  

Background: Garcinielliptone FC corresponds to a polyprenylated acylphloroglucinol having a benzophenonic core (diphenylmethanone) substituted with isoprenyl(s) group(s) (3-methyl-2-butenyl) and 2-isopropenyl-hex-5-enyl. Objective: The present work evaluated the antioxidant activity of garcinielliptone FC (GFC) in vitro against non-biological radicals [2,2-diphenyl-1-picrylhydrazyl (DPPH•) and 2,2'-azinobis-3- ethylbenzothiazoline-6-sulfonic acid (ABTS•+)] and ex vivo against oxidative damage induced by AAPH (2,2'-azobis-2-methylpropionamidine dihydrochloride) and iron/citrate ion in erythrocytes and mitochondria, respectively. Methods: In addition to the protective effect, the main biochemical indexes of oxidative stress, such as lipid peroxidation through the formation of Thiobarbituric Acid Reactive Substances (TBARS), Superoxide Dismutase (SOD), Catalase (CAT) activity and reduced glutathione (GSH) levels. Results: According to the results obtained in erythrocytes, the antioxidant results at concentrations of 0.1, 0.3, 0.7, 1.5 and 3.0 mM were 26.34 ± 0.68, 43.39 ± 2.17, 62.27 ± 2.17, 86.69 ± 0.47 and 92.89 ± 0.45%, respectively, where GFC reduced the rate of oxidative hemolysis when compared to AAPH (p<0.05). The antioxidant activity observed in erythrocytes was also seen in mitochondria in which GFC reduced mitochondrial swelling by increasing the absorbance when compared to iron/citrate ion complex (p<0.05). In both biological models, GFC had an antioxidant effect on erythrocyte and mitochondrial redox balance when analyzing oxidative stress biomarkers, such as reduction of lipid peroxidation and inhibition of depletion in the activity of SOD, CAT and GSH levels. Conclusion: In conclusion, GFC had in vitro and ex vivo antioxidant activity against oxidative damage induced in erythrocytes and mitochondria acting on the erythrocytic and mitochondrial redox balance.


2009 ◽  
Vol 418 (1) ◽  
pp. 135-143 ◽  
Author(s):  
Angelo Cereda ◽  
Aristodemo Carpen ◽  
Gianluca Picariello ◽  
Gabriella Tedeschi ◽  
Silvia Pagani

The rhdA gene of Azotobacter vinelandii codes for RhdA, a rhodanese-domain protein with an active-site loop structure which has not currently been found in proteins of the rhodanese-homology superfamily. Considering the lack of information on the functional role of the ubiquitous rhodaneses, in the present study we examined the in vivo functions of RhdA by using an A. vinelandii mutant strain (MV474), in which the rhdA gene was disrupted by deletion. Preliminary phenotypic characterization of the rhdA mutant suggested that RhdA could exert protection over Fe–S enzymes, which are easy targets for oxidative damage. To highlight the role of RhdA in preserving sensitive Fe–S clusters, in the present study we analysed the defects of the rhdA-null strain by exploiting growth conditions which resulted in enhancing the catalytic deficiency of enzymes with vulnerable Fe–S clusters. We found that a lack of RhdA impaired A. vinelandii growth in the presence of gluconate, a carbon source that activates the Entner–Doudoroff pathway in which the first enzyme, 6-phosphogluconate dehydratase, employs a 4Fe–4S cluster as an active-site catalyst. By combining proteomics, enzymatic profiles and model systems to generate oxidative stress, evidence is provided that to rescue the effects of a lack of RhdA, A. vinelandii needed to activate defensive activities against oxidative damage. The possible functionality of RhdA as a redox switch which helps A. vinelandii in maintaining the cellular redox balance was investigated by using an in vitro model system that demonstrated reversible chemical modifications in the highly reactive RhdA Cys230 thiol.


2019 ◽  
Vol 25 (11) ◽  
pp. 745-754
Author(s):  
Nedim Karagenç ◽  
Göksel Doğan ◽  
Kerem Esmen ◽  
Bengi Çınar Kul ◽  
Hasan Yeşilkaya ◽  
...  

Abstract In vitro culture under atmospheric oxygen puts embryos under oxidative stress and impairs preimplantation development. However, to what extent this process alters the redox balance in the perinatal period remains largely unknown. The aim of the present study was to examine if the redox balance is altered in the lung tissue of fetuses generated through transfer of mouse embryos exposed to atmospheric oxygen at different stages of development and to determine if this has any effect on lung morphogenesis and gene expression. Two experimental groups (EGs) were generated by transferring in vitro- and in vivo-derived blastocysts to pseudo-pregnant females. In vivo-developed fetuses served as control. Enzymatic/nonenzymatic antioxidants, malondialdehyde (MDA) levels, total antioxidant capacity, stage of lung development and gene expression were evaluated on day 18 of pregnancy. Weight of fetuses was significantly less in both experimental cohorts (ANOVA, P < 0.001 versus control), associated with delayed lung development, higher amounts of MDA (ANOVA, P < 0.001 versus control) and altered expression of several genes in oxidative stress/damage pathways. Evidence gathered in the present study indicates that pre-implantation stress caused by culture under atmospheric oxygen, even for a short period of time, leads to fetal growth restriction, impaired lung development and redox balance along with dysregulation of several genes in oxidative stress response. Absence of an EG in which in vitro embryo culture was performed at 5% oxygen and the use of genetically heterogeneous F2 fetuses are the limitations of the study. In any case, the long-term impact of such dramatic changes in the developmental programming of resulting fetuses warrants further investigations.


2013 ◽  
Vol 394 (10) ◽  
pp. 1263-1280 ◽  
Author(s):  
Francisco J. Sánchez-Gómez ◽  
Cristina Espinosa-Díez ◽  
Megha Dubey ◽  
Madhu Dikshit ◽  
Santiago Lamas

Abstract Glutathione is considered the main regulator of redox balance in the cellular milieu due to its capacity for detoxifying deleterious molecules. The oxidative stress induced as a result of a variety of stimuli promotes protein oxidation, usually at cysteine residues, leading to changes in their activity. Mild oxidative stress, which may take place in physiological conditions, induces the reversible oxidation of cysteines to sulfenic acid form, while pathological conditions are associated with higher rates of reactive oxygen species production, inducing the irreversible oxidation of cysteines. Among these, neurodegenerative disorders, cardiovascular diseases and diabetes have been proposed to be pathogenetically linked to this state. In diabetes-associated vascular complications, lower levels of glutathione and increased oxidative stress have been reported. S-glutathionylation has been proposed as a posttranslational modification able to protect proteins from over-oxidizing environments. S-glutathionylation has been identified in proteins involved in diabetic models both in vitro and in vivo. In all of them, S-glutathionylation represents a mechanism that regulates the response to diabetic conditions, and has been described to occur in erythrocytes and neutrophils from diabetic patients. However, additional studies are necessary to discern whether this modification represents a biomarker for the early onset of diabetic vascular complications.


Sign in / Sign up

Export Citation Format

Share Document