scholarly journals Co-cultured Bone-marrow Derived and Tendon Stem Cells: Novel Seed Cells for Bone Regeneration

2019 ◽  
Vol 14 (1) ◽  
pp. 568-575
Author(s):  
Yang Liu ◽  
Chengsong Yuan ◽  
Mei Zhou ◽  
Kanglai Tang

AbstractTendon-bone healing after injury is an unsolved problem. Several types of stem cells are used as seed cells. However, the optimal co-culture ratio of different types of cells suitable for tissue engineering as well as the stimulator for facilitating the differentiation of stem cells in tendon-bone healing is unclear. In this study, the proliferation of both bone marrow-derived stem cells (BMSCs) and tendon stem cells (TSCs) was increased at a 1:1 co-cultured ratio, and proliferation was suppressed by Tenascin C (TNC). TNC treatment can promote osteogenesis or chondrogenesis of both BMSCs and TSCs under a 1:1 co-cultured ratio. In addition, the expression level of Rho-associated kinase (ROCK) increased in the process of TNC-induced osteogenesis and decreased in the process of TNC-induced chondrogenesis. Furthermore, the level of insulin-like growth factor 1 receptor (IGF-1R) and mitogen-activated protein kinase (MEK) was upregulated during the osteogenesis and chondrogenesis of both BMSCs and TSCs after TNC treatment. Although our study was conducted in rats with no direct evaluation of the resulting cells for tendon-bone healing and regeneration, we show that the proliferation of BMSCs and TSCs was enhanced under a 1:1 co-cultured ratio. TNC has a significant impact on the proliferation and differentiation of co-cultured BMSCs and TSCs. IGF-IR, ROCK, and MEK may become involved in the process after TNC treatment.

2020 ◽  
Vol 245 (6) ◽  
pp. 562-575
Author(s):  
Xiaoying Ma ◽  
Jiajun Liu ◽  
Xiaotong Yang ◽  
Kai Fang ◽  
Peiyong Zheng ◽  
...  

Mesenchymal stem cells (MSCs) can act as a carrier in tumor therapy, and tumor suppressor gene-modified MSCs can reach and suppress the tumor. However, in the colon cancer microenvironment, MSCs could promote tumor growth and create the environment that is conducive to the survival of cancer stem cells (CSCs). This study discovered MSCs from three sources (bone marrow, adipose, placenta) could induce the stemness and epithelial–mesenchymal transition (EMT) of HCT116 in vitro, meanwhile adipose- and placenta-derived MSCs increase the proportion of CD133+/CD44+ HCT116. Then, we explored the interaction mechanism between CD133+/CD44+ HCT116 and MSCs by the bioinformatics and in vitro assays. After CD133+/CD44+ HCT116 were co-cultured with MSCs, many cytokines in MSCs were stimulated, including interleukin-8 (IL-8). The binding of IL-8/CXCR2 activates the downstream mitogen-activated protein kinase (MAPK) signaling pathway in colon CSCs, thereby promoting the stemness and EMT. However, inhibition of IL-8/CXCR2/Erk1/2 could reverse the effect of MSCs on CSC stemness. In addition, MSCs co-cultured with CD133+/CD44+ HCT116 produce a carcinoma-associated fibroblast phenotype via intracellular FGF10–PKA–Akt–β-catenin signaling, which can be attenuated by IL-8 peptide inhibitor. To conclude, IL-8 promotes the interaction between colon CSCs and MSCs, and activates the MAPK signaling pathway in colon CSCs, which provides a theoretical basis for the application of MSCs in clinical practice. Impact statement MSCs have the property of chemotaxis and they can migrate to the tumor site by paracrine pathway in the tumor environment, and then interact with tumor cells. Although a mass of studies have been conducted about the impact of MSCs on tumors, it is still controversial whether the exogenous MSCs promote or inhibit tumor growth. In this work, we evaluated the effects of MSCs from three sources (bone marrow, adipose, placenta) on the proliferation, stemness, and metastasis of the colon cancer cells both in vitro and in vivo. Then, we proved the IL-8/CXCR2/MAPK and FGF10–PKA–Akt–β-catenin signaling pathway which mediate the interplay between MSC and CD133+/CD44+ colon cancer cell. This research aims to provide a theoretical basis for the safe application of MSCs in the clinical treatment of colon cancer.


2017 ◽  
Vol 85 (10) ◽  
Author(s):  
Sumanta Kumar Naik ◽  
Avinash Padhi ◽  
Geetanjali Ganguli ◽  
Srabasti Sengupta ◽  
Sanghamitra Pati ◽  
...  

ABSTRACT Mycobacterium tuberculosis primarily infects lung macrophages. However, a recent study showed that M. tuberculosis also infects and persists in a dormant form inside bone marrow mesenchymal stem cells (BM-MSCs) even after successful antibiotic therapy. However, the mechanism(s) by which M. tuberculosis survives in BM-MSCs is still not known. Like macrophages, BM-MSCs do not contain a well-defined endocytic pathway, which is known to play a central role in the clearance of internalized mycobacteria. Here, we studied the fate of virulent and avirulent mycobacteria in Sca-1+ CD44+ BM-MSCs. We found that BM-MSCs were able to kill avirulent Mycobacterium smegmatis and Mycobacterium bovis BCG but not the pathogenic species M. tuberculosis. Further mechanistic studies revealed that pathogenic M. tuberculosis dampens the antibacterial response of BM-MSCs by downregulating the expression of the cationic antimicrobial peptide cathelicidin. In contrast, avirulent mycobacteria were effectively killed by inducing the Toll-like receptor 2/4 (TLR2/4) pathway-dependent expression of cathelicidin, while small interfering RNA (siRNA)-mediated cathelicidin silencing increased the survival of M. bovis BCG in BM-MSCs. We also showed that M. bovis BCG infection caused increased expression levels of MyD88, phospho-interleukin-1 receptor-associated kinase 4 (pIRAK-4), and the p38 mitogen-activated protein kinase (MAPK) signaling pathway. Further downstream investigations demonstrated that IRAK-4–p38 activation increased the nuclear translocation of NF-κB, which subsequently induced the expression of cathelicidin and the cytokine interleukin-1β (IL-1β), resulting in the decreased survival of M. bovis BCG. On the other hand, inhibition of TLR2/4, pIRAK-4, p38, and NF-κB nuclear translocation decreased cathelicidin and IL-1β expression levels and therefore increased the survival of avirulent mycobacteria. This is the first report that demonstrates that virulent mycobacteria manipulate the TLR2/4–MyD88–IRAK-4–p38–NF-κB–Camp–IL-1β pathway to survive inside bone marrow stem cells.


Author(s):  
Omika Katoch ◽  
Mrinalini Tiwari ◽  
Namita Kalra ◽  
Paban K. Agrawala

AbstractDiallyl sulphide (DAS), the pungent component of garlic, is known to have several medicinal properties and has recently been shown to have radiomitigative properties. The present study was performed to better understand its mode of action in rendering radiomitigation. Evaluation of the colonogenic ability of hematopoietic progenitor cells (HPCs) on methocult media, proliferation and differentiation of hematopoietic stem cells (HSCs), and transplantation of stem cells were performed. The supporting tissue of HSCs was also evaluated by examining the histology of bone marrow and in vitro colony-forming unit–fibroblast (CFU-F) count. Alterations in the levels of IL-5, IL-6 and COX-2 were studied as a function of radiation or DAS treatment. It was observed that an increase in proliferation and differentiation of hematopoietic stem and progenitor cells occurred by postirradiation DAS administration. It also resulted in increased circulating and bone marrow homing of transplanted stem cells. Enhancement in bone marrow cellularity, CFU-F count, and cytokine IL-5 level were also evident. All those actions of DAS that could possibly add to its radiomitigative potential and can be attributed to its HDAC inhibitory properties, as was observed by the reversal radiation induced increase in histone acetylation.


Sign in / Sign up

Export Citation Format

Share Document