The role of lipids and polysaccharides in model root mucilage with implications for the surface activity of the rhizosphere

Biologia ◽  
2017 ◽  
Vol 72 (11) ◽  
Author(s):  
Fengxian Chen ◽  
Gilboa Arye

AbstractThe main goal of this study was to evaluate the role of polysaccharide and phospholipids on the surface activity of model root mucilage in its liquid and solid phases. Polygalacturonic acid (PGA) and Phosphatidylcholine (PC) were used as representative polysaccharide and phospholipid, respectively. The surfactant performance of the PC found to be superior relative to the PGA – reducing the surface tension (ST) down to 32.9 mN m

Viruses ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 1442
Author(s):  
Toshiki Sawada ◽  
Rina Oyama ◽  
Michihiro Tanaka ◽  
Takeshi Serizawa

Peptides with specific affinities for various materials have been identified in the past three decades and utilized in materials science and engineering. A peptide’s capability to specifically interact with materials is not naturally derived but screened from a biologically constructed peptide library displayed on phages or cells. To date, due to limitations in the screening procedure, the function of screened peptides has been primarily limited to the affinity for target materials. Herein, we demonstrated the screening of surfactant-like peptides from a phage-displayed peptide library. A screened phage clone displaying a peptide showed high activity for accumulating at emulsion surfaces with certain assembled structures, resulting in stable emulsions. The surface tension for the solution of the chemically synthesized peptide decreased with increasing peptide concentration, demonstrating certain surface activity, which corresponded to the ability to decrease the surface tension of liquids (e.g., water), owing to the accumulation of molecules at the air–liquid or liquid–liquid interface. Peptides with a randomized sequence did not lower the surface tension, indicating the essential role of amino acid sequences in surface activity. Our strategy for identifying novel functional peptides from a phage-displayed peptide library can be used to expand the applicability of peptidyl materials and biosurfactants.


2020 ◽  
Vol 299 ◽  
pp. 1038-1043
Author(s):  
Mikhail M. Kosukhin ◽  
Andrei M. Kosukhin

The research findings of colloid and chemical properties of poly-functional modifiers (PFM) with various chemical compositions and qualitative and quantitative proportions of polar organic substances with various molecular weights have been presented. The possibility of regulating the properties of PFM and concrete mixes, modified by them by means of not only changing the chemical composition of modifiers, but combining the types and quantity of active admixtures of polar organic substances with various molecular weights has been shown. It has been demonstrated that the modifiers under study possess the surface activity at solid-solution phase boundary, reducing the surface tension σsolid-liquid (σs-l) At the same time the surface tension at the solution-air phase boundary can remain the same or reduce to a certain extent depending on the modifier’s chemical composition. PFM and superplasticizer (SP) SB-3, which have, unlike SP S-3, the certain surface activity at solid-solution boundary, increase the air entrainment into concrete mix by 0.5÷1.5%, additionally increasing the freeze-thaw resistance of concretes of both fluid and equal-workable compositions without affecting their strength. The adsorption of modifiers on the disperse phase of suspension is conditioned by dispersion forces and, independently of its kind, is of monomolecular nature. For the localization of PFM molecules on the surface of a particle, its molecule should have a system of bonded aromatic rings or conjugated double bonds. The adsorbed modifier’s molecules should make the disperse phase surface hydrophilic and for this purpose they should contain hydrophilic groups along the full length. All this predetermines the role of adsorption-solvation factor in modifiers’ mechanism of action.


1992 ◽  
Vol 280 ◽  
Author(s):  
David Goodstein ◽  
P. Day ◽  
M. LaMadrid ◽  
M. Lysek

ABSTRACTThe equilibrium phase diagrams of monolayers of many substances adsorbed on graphite have long been studied as examples of 2-dimensional (2D) matter. One typically observes 2D gas and liquid phases, and solid phases that may be commensurate or incommensurate with the substrate lattice. Many experimental techniques have been used, but thermodynamic measurements are generally the most useful for tracing out phase boundaries.Recent advances in technique have made it possible to use thermodynamic measurements to study the phase diagrams of the second and higher layers, up to the fifth or sixth. These advances include ultra high resolution scanning calorimetry, and a detailed understanding of the role of capillary condensation in corners and pores of the graphite foam substrate. We find a rich array of phases and phase transitions in multilayer methane, argon and krypton. The second and third layers typically have distinct 2D gas, liquid and solid phases evidenced by 2D triple points and critical points. We observe phase transitions between solid phases that are commensurate and incommensurate with the layer below. We also observe melting of the first layer at higher temperatures, even when one to five additional layers are adsorbed on top of it.In argon and krypton, but not in methane, a strange new phenomenon is observed at temperatures above the gas-liquid critical point of the nth layer for n> 3. Below that temperature, nthlayer gas coexists with a condensed nth layer. At some temperature above it, a new coexistence region is observed in which a partial nth layer coexists with a partial n + 1st layer. This behavior is thought to be evidence for a theoretically predicted phase transition of the bulk interface, called the preroughening transition.


2014 ◽  
Vol 790-791 ◽  
pp. 85-90 ◽  
Author(s):  
Meng Huai Wu ◽  
Abdellah Kharicha ◽  
Andreas Ludwig

This article is to assess the modeling treatment of the growth kinetics (finite or infinite diffusion in liquid and solid phases) during solidification and its influence on the calculation of macrosegregation. A model of diffusion-governed growth kinetic for ternary alloy is developed and used for this assessment. Solidification of a 2D casting (50 x 50 mm2) of a ternary alloy (Fe-0.45 wt.% C-1.06 wt.%Mn) is considered. The result shows that finite diffusion in liquid, important for the initial stage of solidification, plays very important role in the formation of macrosegregation. Moreover, the role of the finite diffusion kinetics in the formation of macrosegregation shows differently in the two extreme cases of solidification structures (columnar or equiaxed).


2019 ◽  
Vol 19 (7) ◽  
pp. 4741-4761 ◽  
Author(s):  
Nønne L. Prisle ◽  
Jack J. Lin ◽  
Sara Purdue ◽  
Haisheng Lin ◽  
J. Carson Meredith ◽  
...  

Abstract. The role of surfactants in governing water interactions of atmospheric aerosols has been a recurring topic in cloud microphysics for more than two decades. Studies of detailed surface thermodynamics are limited by the availability of aerosol samples for experimental analysis and incomplete validation of various proposed Köhler model frameworks for complex mixtures representative of atmospheric aerosol. Pollenkitt is a viscous material that coats grains of pollen and plays important roles in pollen dispersion and plant reproduction. Previous work suggests that it may also be an important contributor to pollen water uptake and cloud condensation nuclei (CCN) activity. The chemical composition of pollenkitt varies between species but has been found to comprise complex organic mixtures including oxygenated, lipid, and aliphatic functionalities. This mix of functionalities suggests that pollenkitt may display aqueous surface activity, which could significantly impact pollen interactions with atmospheric water. Here, we study the surface activity of pollenkitt from six different species and its influence on pollenkitt hygroscopicity. We measure cloud droplet activation and concentration-dependent surface tension of pollenkitt and its mixtures with ammonium sulfate salt. Experiments are compared to predictions from several thermodynamic models, taking aqueous surface tension reduction and surfactant surface partitioning into account in various ways. We find a clear reduction of surface tension by pollenkitt in aqueous solution and evidence for impact of both surface tension and surface partitioning mechanisms on cloud droplet activation potential and hygroscopicity of pollenkitt particles. In addition, we find indications of complex nonideal solution effects in a systematic and consistent dependency of pollenkitt hygroscopicity on particle size. The impact of pollenkitt surface activity on cloud microphysics is different from what is observed in previous work for simple atmospheric surfactants and more resembles recent observations for complex primary and secondary organic aerosol, adding new insight to our understanding of the multifaceted role of surfactants in governing aerosol–water interactions. We illustrate how the explicit characterization of pollenkitt contributions provides the basis for modeling water uptake and cloud formation of pollen and their fragments over a wide range of atmospheric conditions.


1996 ◽  
Vol 118 (1) ◽  
pp. 103-109 ◽  
Author(s):  
W. R. McGillis ◽  
V. P. Carey

The Marangoni effect on the critical heat flux (CHF) condition in pool boiling of binary mixtures has been identified and its effect has been quantitatively estimated with a modified model derived from hydrodynamics. The physical process of CHF in binary mixtures, and models used to describe it, are examined in the light of recent experimental evidence, accurate mixture properties, and phase equilibrium revealing a correlation to surface tension gradients and volatility. A correlation is developed from a heuristic model including the additional liquid restoring force caused by surface tension gradients. The CHF condition was determined experimentally for saturated methanol/water, 2-propanol/water, and ethylene glycol/water mixtures, over the full range of concentrations, and compared to the model. The evidence in this study demonstrates that in a mixture with large differences in surface tension, there is an additional hydrodynamic restoring force affecting the CHF condition.


Author(s):  
Rami Benkreif ◽  
Fatima Zohra Brahmia ◽  
Csilla Csiha

AbstractSurface tension of solid wood surfaces affects the wettability and thus the adhesion of various adhesives and wood coatings. By measuring the contact angle of the wood, the surface tension can be calculated based on the Young-Dupré equation. Several publications have reported on contact angle measured with different test liquids, under different conditions. Results can only be compared if the test conditions are similar. While the roles of the drop volume, image shooting time etc., are widely recognized, the role of the wood surface moisture content (MC) is not evaluated in detail. In this study, the effect of wood moisture content on contact angle values, measured with distilled water and diiodomethane, on sanded birch (Betula pendula) surfaces was investigated, in order to find the relationship between them. With increasing MC from approximately 6% to 30%, increasing contact angle (decreasing surface tension) values were measured according to a logarithmic function. The function makes possible the calculation of contact angles that correspond to different MCs.


2021 ◽  
Vol 13 (15) ◽  
pp. 8122
Author(s):  
Shijie Tian ◽  
Weiqiang Tan ◽  
Xinyuan Wang ◽  
Tingting Li ◽  
Fanhao Song ◽  
...  

Surface activity of humic acid (HA) and its six sub-fractions isolated from forest soil were characterized by surface tension measurements, dynamic light scattering, and laser doppler electrophoresis. The surface tension of HA and its sub-fractions reduced from 72.4 mN·m−1 to 36.8 mN·m−1 in exponential model with the increasing concentration from 0 to 2000 mg·L−1. The critical micelle concentration (CMC) and Z-average particle size ranged from 216–1024 mg·L−1 and 108.2–186.9 nm for HA and its sub-fractions, respectively. The CMC have related with alkyl C, O-alkyl C, aromatic C, and carbonyl C (p < 0.05), respectively, and could be predicted with the multiple linear regression equation of CMC, CMC = 18896 − 6.9 × C-296 × alkyl C-331 × aromatic C-17019 × H/C + 4054 × HB/HI (p < 0.05). The maximum particle size was 5000 nm after filtered by a membrane with pore size of 450 nm, indicating HA and its sub-fractions could progressed self-assembly at pH 6.86. The aggregate sizes of number-base particle size distributions were mainly in six clusters including 2 ± 1 nm, 5 ± 2 nm, 10 ± 3 nm, 21 ± 8 nm, 40 ± 10 nm, and >50 nm analyzed by Gaussian model that maybe due to the inconsistency of the components and structures of the HA sub-fractions, requiring further study. It is significance to explore the surface activity of HA and its sub-fractions, which is helpful to clarify the environmental behavior of HA.


Sign in / Sign up

Export Citation Format

Share Document