Effect of steroidal saponins-loaded nano-bioglass/phosphatidylserine/collagen bone substitute on bone healing

Author(s):  
Chunrong Yang ◽  
Huazhong Wu ◽  
Jianhua Wang

AbstractThe objective of this study was to investigate the therapeutic potential of nano-bioglass/phosphatidylserine/collagen (nBG/PS/COL) scaffolds loaded with steroidal saponins as an inducer factor for skeletal defects. The drugs-encapsulated bone substitute was prepared by loading steroidal saponins-collagen microsphere suspension in nano-bioglass and phosphatidylserine (PS) composite. The scaffolds possess an interconnected porous structure with a porosity of about 82.3%. The pore size ranges from several micrometers up to about 400 μm. The drug release assays showed the long-term sustained release of steroidal saponins from the scaffolds with effective and safe bioactivity. Moreover,

2020 ◽  
Vol 3 (2) ◽  
pp. 25-37
Author(s):  
Pyare Lal ◽  
A.S. William Arputha Sundar ◽  
Yogendra Singh

This research aimed to developintrapocket,biodegradablechips ofpoly(d,l-lactide-co-glycolide) (PLGA) loaded with Metronidazole (MZ) and levofloxacin (LF),for sustained release local drug delivery in periodontal pocket to treat periodontitis. Metronidazole and levofloxacin are widely employed for the treatment of periodontitis,but high oral dose and resistance development after long-term oral administration limit their use, hence local delivery is a good approach. The chips were prepared by solvent casting technique using diethyl phthalate as plasticizer. Their physical characteristics, such as drug content,surface pH, swelling index, and folding endurance, exhibited results within limit. Further, FTIR and DSCstudies revealed stability of chips and compatibility between drugs and excipients.In vitro release in McIlvainebuffer pH 7.8 was of sustained nature assisted by the burst effect. Design-Expert® (11.0.4) software was used to study the effect of polymer & plasticizer on release of drugs Polymer concentrationsnegatively affected drug release and positively affected T90 (time for releasing 90% of the drug) due toaltered matrix density. In contrast, the plasticizer concentration increases membrane permeability andhence increased drug release, lowering T90. Forvarious response variables,polynomial mathematical models were generated usingmultiple regression analysis, and found to be statistically significant (????<0.05).The antibacterial efficacy of films was tested on Pseudomonas spp. Bacteroides spp., indicatinggood antibacterial activity. Optimized formulations were further used for preparing optimized biodegradable, Metronidazole-Levofloxacin sustained release chip. Conclusively, the films of MZ and LF were successful tools for the management ofperiodontitis.


2017 ◽  
Vol 5 (46) ◽  
pp. 9165-9174 ◽  
Author(s):  
Yanshan Gao ◽  
Tian Wei Teoh ◽  
Qiang Wang ◽  
Gareth R. Williams

Novel organic–inorganic nanohybrids have been prepared, and are found to provide long-term extended drug release.


2012 ◽  
Vol 1 (8) ◽  
pp. 186 ◽  
Author(s):  
Urmi Das ◽  
Mohammad Salim Hossain

<p>Sustained release Carvedilol matrix tablets constituting Kollidon SR were developed in this study in an attempt to investigate the effect of release modifiers on the release profile of Carvedilol from matrix. Three matrix tablet formulations were prepared by direct compression of Kollidon SR in combination with release modifier (HPMC and Microcrystalline Cellulose) and magnesium stearate. Tablets containing only Kollidon SR with the active ingredient demonstrated a rapid rate of drug release. Incorporation of HPMC in the matrix tablet prolonged the release of drug but incorporation of Microcrystalline Cellulose showed superimposable release pattern with an initial burst effect as confirmed by mean dissolution time and Higuchi release rate data. After 7 hours of dissolution, Carvedilol release from the matrix systems were 91.42%, 83.41%, from formulation F1 and F2 respectively. Formulation F3 exhibited 100 % release at 4 hours. All the tablet formulations showed acceptable pharmaco-technical properties and complied with the in-house specifications for tablet weight variation, friability, hardness, thickness, and diameter. Prepared tablets also showed sustained release property for carvedilol. The drug release mechanism from the matrix tablets of F1 and F2 was found to be followed by Fickian and F3 by Non-Fickian mechanism.</p><p>DOI: <a href="http://dx.doi.org/10.3329/icpj.v1i8.11095">http://dx.doi.org/10.3329/icpj.v1i8.11095</a></p> <p>International Current Pharmaceutical Journal 2012, 1(8): 186-192</p>


Author(s):  
Evi Zohar

Continuing the workshop I've given in the WPC Paris (2017), this article elaborates my discussion of the way I interlace Focusing with Differentiation Based Couples Therapy (Megged, 2017) under the systemic view, in order to facilitate processes of change and healing in working with intimate couples. This article presents the theory and rationale of integrating Differentiation (Bowen, 1978; Schnarch, 2009; Megged, 2017) and Focusing (Gendlin, 1981) approaches, and its therapeutic potential in couple's therapy. It is written from the point of view of a practicing professional in order to illustrate the experiential nature and dynamics of the suggested therapeutic path. Differentiation is a key to mutuality. It offers a solution to the central struggle of any long term intimate relationship: balancing two basic life forces - the drive for individuality and the drive for togetherness (Schnarch, 2009). Focusing is a body-oriented process of self-awareness and emotional healing, in which one learns to pay attention to the body and the ‘Felt Sense’, in order to unfold the implicit, keep it in motion at the precise pace it needs for carrying the next step forward (Gendlin, 1996). Combining Focusing and Differentiation perspectives can cultivate the kind of relationship where a conflict can be constructively and successfully held in the inner world of each partner, while taking into consideration the others' well-being. This creates the possibility for two people to build a mutual emotional field, open to changes, permeable and resilient.


Author(s):  
Bhikshapathi D. V. R. N. ◽  
Arun Kumar Jarathi ◽  
Suresh Gande ◽  
Viswaja Medipally ◽  
Ramesh Bomma

Background and the purpose of the study: Risedronate sodium inhibits osteoclast bone resorption and modulates bone metabolism. Risedronate has a high affinity for hydroxyapatite crystals in bone and is a potent antiresorptive agent. In the present investigation efforts were made to improve the bioavailability of risedronate sodium by increasing the residence time of the drug through sustained-release matrix capsule formulation via gastroretentive mechanism. Capsules were prepared by wet granulation technique. The influence of gel forming agents, amount of risedronate and total weight of capsules on physical properties, in vitro buoyancy, drug release, FTIR, DSC, X-ray studies were investigated. The release mechanisms were explored and explained by applying zero order, first order, Higuchi and Korsmeyer equations. The selected formulations were subjected to stability study at 40 °C/75% RH, 25 °C/60% RH for the period of three months. For all formulations, kinetics of drug release from capsules followed Higuchi’s square root of time kinetic treatment heralding diffusion as predominant mechanism of drug release. Formulation containing 25 mg HPMC K4M and 75 mg HPMC K100 LV (F-8) showed zero order release profile. There was no significant change in the selected formulation, when subjected to accelerated stability conditions over a period of three months. X-ray imaging in six healthy human volunteers revealed a mean gastric retention period of 5.60 ± 0.77 hrs for the selected formulation. Stable, sustained release effervescent floating capsules of risedronate sodium could be prepared by wet granulation technique.  


2020 ◽  
Vol 12 ◽  
Author(s):  
Sagar R. Pardeshi ◽  
Harshal A. Mistari ◽  
Rakhi S. Jain ◽  
Pankaj R. Pardeshi ◽  
Rahul L. Rajput ◽  
...  

Background: Moxifloxacin is a BCS class I drug used in the treatment of bacterial conjunctivitis and keratitis. Despite its high water solubility, it possesses limited bioavailability due to anatomical and physiological constraints associated with the eyes which required multiple administrations to achieve a therapeutic effect. Objective: In order to prolong drug release and to improve antibacterial efficacy for the treatment of bacterial keratitis and conjunctivitis, moxifloxacin loaded nanoemulsion was developed. Methods: The concentration of oil (oleic acid), surfactant (tween 80), and cosurfactant (propylene glycol) were optimized by employing a 3-level 2-factorial design of experiment for the development of nanoemulsion. The developed nanoemulsion was characterized by particle size distribution, viscosity, refractive index, pH, drug content and release, transmission electron microscopy (TEM), and antibacterial study. The compatibility of the drug with the excipients was accessed by Fourier transform infrared spectroscopy (FTIR). Result: The average globule size was found to be 198.20 nm. The TEM study reveals the globules were nearly spherical and are well distributed. In vitro drug release profile for nanoemulsion shown sustained drug release (60.12% at the end of 6 h) compared to drug solution, where complete drug released within 2 h. The antibacterial effectiveness of the drug-loaded nanoemulsion was improved against S. aureus compared with the marketed formulation. Conclusion: The formulated sustained release nanoemulsion could be a promising alternative to eye drop with improved patient compliance by minimizing dosing frequency with improved antibacterial activity.


Sign in / Sign up

Export Citation Format

Share Document