Persistence of sea urchin (Heliocidaris erythrogramma) barrens on the east coast of Tasmania: inhibition of macroalgal recovery in the absence of high densities of sea urchins

2005 ◽  
Vol 48 (2) ◽  
Author(s):  
Joseph P. Valentine ◽  
Craig R. Johnson
2014 ◽  
Vol 2014 ◽  
pp. 1-4 ◽  
Author(s):  
Archana Ayyagari ◽  
Ramesh Babu Kondamudi

The present study reports a new association between the sea urchinStomopneustes variolaris(Lamarck, 1816) and the polychaeteLumbrineris latreilli(Audouin & Milne Edwards, 1834) based on the specimens collected intertidally at Bay of Bengal (Visakhapatnam, east coast of India). Out of 60 sea urchins collected, 10 (16.67%) were associated with the polychaete. The prevalence increased with the increasing sea urchin test diameter. All polychaetes were exclusively found between the spines, in the aboral region of the host. This association protects the polychaete from the predators during displacement from its natural habitat.


2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Siti Akmar Khadijah Ab Rahim ◽  
Raymie Nurhasan

Sea urchins are marine benthos that live in different habitats available at shallow and deep waters. In Malaysia, Sabah is the only state that exploits sea urchins without knowing the status of natural stocks. This study identified the sea urchin species diversity at shallow subtidal zones in east coast of Borneo which is part of the Coral Triangle. Belt transects were deployed to quantify the species composition and qualitative observations on the habitat types were also noted. Simultaneously, documentation of species available in several wet markets was gathered through impromptu conversation with the sellers. In this study, a total of 10 species of sea urchin were recorded from 18 sampling sites, namely, Phyllacanthus imperialis, Diadema setosum, D. savignyi, Echinothrix calamaris, Mespilia globulus, Salmacis sphaeroides, Echinometra mathaei, Pseudoboletia maculata, Toxopneustes pileolus, and Tripneustes gratilla. The most dominant one that showed a wide distribution was D. setosum. Three species are new records for Malaysia. Among the study sites, Semporna district showed the highest species number. Our findings illustrate that shallow waters on the eastern part of Borneo support high diversity of sea urchin resources. Future study should explore the sea urchin diversity at deeper waters and also on the west coast of Sabah.


2007 ◽  
Vol 65 (1) ◽  
pp. 1-11 ◽  
Author(s):  
Hugh G. Pederson ◽  
Craig R. Johnson

Abstract Pederson, H. G., and Johnson, C. R. 2008. Growth and age structure of sea urchins (Heliocidaris erythrogramma) in complex barrens and native macroalgal beds in eastern Tasmania. – ICES Journal of Marine Science, 65: 1–11. The formation of small-scale barrens of sea urchins on the east coast of Tasmania allows for direct comparison of the growth rates and age structures of sea urchin populations in barrens and habitats dominated by native macroalgae. However, such barrens are atypical of any previously described in temperate regions worldwide mainly because of the establishment and seasonal colonization by the introduced macroalga Undaria pinnatifida. Growth models were fitted to sea urchin (Heliocidaris erythrogramma) data, based on tag-recapture information from two distinct community types, a native macroalgal bed and a sea urchin barren colonized by U. pinnatifida. Despite the distinct contrast in habitats, size-at-age relationships and age frequency distributions were not significantly different between the two populations. However, the relationship between jaw length and test diameters was significantly different between populations, sea urchins in barrens possessing larger jaws relative to conspecifics of similar test diameter in native macroalgal habitats. It is proposed that the growth of sea urchins on barrens is not adversely affected by the loss of native macroalgae in the presence of U. pinnatifida. However, sea urchins display a level of resource limitation in barrens because of differences in the relationships of sea urchin morphometrics.


2004 ◽  
Vol 55 (1) ◽  
pp. 93 ◽  
Author(s):  
Mathew A. Vanderklift ◽  
Gary A. Kendrick

The present study assessed variation in the abundances of large herbivorous invertebrates in south-western Australia. There was some habitat partitioning between different parts of the reef: of the most frequently recorded species, the sea urchins Phyllacanthus irregularis and Centrostephanus tenuispinus were found primarily at the base of steep rock faces, whereas the gastropods Turbo torquatus and Australium squamifera were found primarily on open sections of reef. The sea urchin Heliocidaris erythrogramma was evenly distributed between these two habitats. For C. tenuispinus and H. erythrogramma, differences among locations (separated by tens to hundreds of kilometers) were the main source of variation in abundances. Phyllacanthus irregularis was more evenly distributed among locations. Abundances of sea urchins at each reef varied little over 26 months, suggesting low mortality and low recruitment. Turbo torquatus and A. squamifera varied significantly in abundance among reefs separated by < 10 km, although these differences were influenced by fluctuations over time. Broad patterns in abundances were evident: overall, abundances of herbivorous invertebrates were low, but certain areas supported high abundances. This suggests that herbivory may be a minor process in this region; however, the importance of herbivory at reefs with and without high abundances of herbivores deserves further attention.


2013 ◽  
Vol 94 (5) ◽  
pp. 1033-1040 ◽  
Author(s):  
Dan A. Smale ◽  
Thomas Wernberg

Sea urchins are key herbivores in many coastal ecosystems. The purple sea urchin, Heliocidaris erythrogramma, is widely distributed across temperate Australia where it exhibits considerable plasticity in feeding behaviour and ecophysiology. In this study we examined H. erythrogramma populations on subtidal reefs along ~4° of latitude in south-west Australia. We used a multi-factorial survey design to assess variability in H. erythrogramma abundances between locations (>200 km part), sites (≥1 km apart) and habitat types (reef flats and slopes). We also examined spatial variability in urchin size, condition (measured by gonad index), and the relative abundances of two co-occurring subspecies. Urchin densities were generally low and did not vary between locations, but did vary between habitat types and amongst sites. Site-level variability in urchin size and condition was also pronounced. The southernmost population comprised smaller individuals and greater relative abundance of the H. e. erythrogramma subspecies, which is abundant on the east coast of Australia. We observed no indication of population-level responses to a recent extreme warming event that impacted the wider ecology of the region, but further investigation into the effects of both gradual warming and short-term climatic events on the ecology of H. erythrogramma and other key herbivores is required.


2021 ◽  
Author(s):  
Jonathan Hira ◽  
Klara Stensvåg

Abstract “Sea urchin lesion syndrome” is known as sea urchins disease with the progressive development of necrotic epidermal tissue and loss of external organs, including appendages on the outer body surface. Recently, a novel strain, Vibrio echinoideorum has been isolated from the lesions of green sea urchin (Strongylocentrotus droebachiensis), an economically important mariculture species in Norway. V. echinoideorum has not been reported elsewhere in association of with green sea urchin lesion syndrome. Therefore, in this study, an immersion based bacterial challenge experiment was performed to expose sea urchins (wounded and non-wounded) to V. echinoideorum, thereby mimicking a nearly natural host-pathogen interaction under controlled conditions. This infection experiment demonstrated that only the injured sea urchins developed the lesion to a significant degree when exposed to V. echinoideorum. Pure cultures of the employed bacterial strain was recovered from the infected animals and its identity was confirmed by the MALDI-TOF MS spectra profiling. Additionally, the hemolytic phenotype of V. echinoideorum substantiated its virulence potential towards the host, and this was also supported by the cytolytic effect on red spherule cells of sea urchins. Furthermore, the genome sequence of V. echinoideorum was assumed to encode potential virulence genes and were subjected for in silico comparison with the established virulence factors of Vibrio vulnificus and Vibrio tasmaniensis. This comparative virulence profile provided novel insights about virulence genes and their putative functions related to chemotaxis, adherence, invasion, evasion of the host immune system, and damage of host tissue and cells. Thus, it supports the pathogenicity of V. echinoideorum. In conclusion, the interaction of V. echinoideorum with injured sea urchins appears to be essential for the development of lesion syndrome and therefore, revealing its potentiality as an opportunistic pathogen.


Author(s):  
J.A. Baeza ◽  
M. Thiel

The porcellanid crab Liopetrolisthes mitra is a common associate of the black sea urchin, Tetrapygus niger in north central Chile. The host-use pattern, population dynamics and reproductive pattern of L. mitra on sea urchins were examined between January 1996 and February 1997. Each month, between 60 and 95 per cent of all collected urchins hosted crabs, with the highest frequency of cohabitation occurring during the austral summer (January to March). Group sizes of crabs on individual urchins ranged from 1 to 25 crabs per host. The average density of crabs on the urchins ranged from 2 to 5.5 crabs per host. Large urchins were inhabited by crabs more frequently than small urchins but urchin size had no effect on the number or size of crabs. The sex ratio of adult crabs was ˜1:1 during most months. Reproduction occurred throughout the year but was most intense during the austral spring and summer (October to March), when the highest percentage of ovigerous females were found. Similarly, recruitment of L. mitra occurred throughout the year but reached a peak during austral summer and early autumn (January to May). All life stages of L. mitra including recently settled megalopae and reproductive adults were found on urchins. Size–frequency analysis indicated that many crabs live >1.5 years. The results of this study confirm that the association between L. mitra and T. niger is strong and persists throughout the benthic life of the commensal crab.


2014 ◽  
Author(s):  
Matthew C Foster ◽  
Jarrett E Byrnes ◽  
Daniel C Reed

Consumer growth and reproductive capacity are direct functions of diet. Strongylocentrotid sea urchins, the dominant herbivores in California kelp forests, strongly prefer giant kelp (Macrocystis pyrifera), but are highly catholic in their ability to consume other species. The biomass of Macrocystis fluctuates greatly in space and time and the extent to which urchins can use alternate species of algae or a mixed diet of multiple algal species to maintain fitness when giant kelp is unavailable is unknown. We experimentally examined the effects of single and mixed species diets on consumption, growth and gonad weight in the purple sea urchin Strongylocentrotus purpuratus. Urchins were fed single species diets consisting of one of four common species of macroalgae (the kelps Macrocystis pyrifera and Pterygophora californica, and the red algae Chondracanthus corymbiferus and Rhodymenia californica (hereafter referred to by genus) or a mixed diet containing all four species ad libitum over a 13-week period in a controlled laboratory setting. Urchins fed Chondracanthus, Macrocystis and a mixed diet showed the highest growth (in terms of test diameter, wet weight and jaw length) and gonad weight while urchins fed Pterygophora and Rhodymenia showed the lowest. Urchins consumed their preferred food, Macrocystis at the highest rate when offered a mixture, but consumed Chondracanthus or Macrocystis at similar rates when the two algae were offered alone. The differences in urchin feeding behavior and growth observed between these diet types suggest the relative availability of the algae tested here could affect urchin populations and their interactions with the algal assemblage. The fact that the performance of urchins fed Chondracanthus was similar or higher than those fed the preferred Macrocystis suggests purple sea urchins could sustain growth and reproduction during times of low Macrocystis abundance as is common following large wave events.


2014 ◽  
Vol 15 (3) ◽  
pp. 475 ◽  
Author(s):  
S. GARCIA-SANZ ◽  
P. G. NAVARRO ◽  
F. TUYA

Despite sea-urchins can play an important role affecting the community structure of subtidal bottoms, factors controlling the dynamics of sea-urchin populations are still poorly understood. We assessed the seasonal variation in recruitment of three sea-urchin species (Diadema africanum, Paracentrotus lividus and Arbacia lixula) at Gran Canaria Island (eastern Atlantic) via monthly deployment of artificial collectors throughout an entire annual cycle on each of four adjacent habitat patches (seagrasses, sandy patches, ‘urchin-grazed’ barrens and macroalgal-dominated beds) within a shallow coastal landscape. Paracentrotus lividus and A. lixula had exclusively one main recruitment peak in late winter-spring. Diadema africanum recruitment was also seasonal, but recruits appeared in late summer-autumn, particularly on ‘urchin-grazed’ barrens with large abundances of adult conspecifics. In conclusion, this study has demonstrated non-overlapping seasonal recruitment patterns of the less abundant species (P. lividus and A. lixula) with the most conspicuous species (D. africanum) in the study area.


Sign in / Sign up

Export Citation Format

Share Document