scholarly journals Hypothetical analysis for peristaltic transport of metallic nanoparticles in an inclined annulus with variable viscosity

2016 ◽  
Vol 64 (2) ◽  
pp. 447-454 ◽  
Author(s):  
S. Nadeem ◽  
H. Sadaf

Abstract The main objective of this article is to present a mathematical model for peristaltic transport in an inclined annulus. In this analysis, two-dimensional flow of a viscous nanofluid is observed in an inclined annulus with variable viscosity. Copper as nanoparticle with blood as its base fluid has been considered. The inner tube is unifom or rigid, while the outer tube takes a sinusoidal wave. Governing equations are solved under the well-known assumptions of low Reynolds number and long-wavelength. Exact solutions have been established for both velocity and nanoparticle temperature. The features of the peristaltic motion are explored by plotting graphs and discussed in detail

2016 ◽  
Vol 139 (1) ◽  
Author(s):  
Siddharth Shankar Bhatt ◽  
Amit Medhavi ◽  
R. S. Gupta ◽  
U. P. Singh

In the present investigation, problem of heat transfer has been studied during peristaltic motion of a viscous incompressible fluid for two-dimensional nonuniform channel with permeable walls under long wavelength and low Reynolds number approximation. Expressions for pressure, friction force, and temperature are obtained. The effects of different parameters on pressure, friction force, and temperature have been discussed through graphs.


2018 ◽  
Vol 7 (4.10) ◽  
pp. 49 ◽  
Author(s):  
J. Prakash ◽  
E. P.Siva ◽  
A. Govindarajan ◽  
M. Vidhya

The peristaltic flow of a viscoelastic fluid in the tapered microchannel with variable viscosity is investigated. This study is reinvigorated by discovering fluid dynamic in peristaltic motion as signified by biological flows, pharmacodynamics and gastro-intestinal motility enhancement. The microchannel non-uniform and asymmetry is developed by choosing a peristaltic wave train on the wall with different amplitudes and phases. The flow analysis has been arisen for low Reynolds number and long wavelength case. The solutions for stream function, axial velocity and pressure gradient are obtained. The effects of pertinent parameters on the average pressure rise per wavelength are investigated by means of numerical integration. The axial velocity and phenomena of trapping are further discussed.  


2010 ◽  
Vol 132 (5) ◽  
Author(s):  
J. M. Osborne ◽  
R. D. O’Dea ◽  
J. P. Whiteley ◽  
H. M. Byrne ◽  
S. L. Waters

A three phase model for the growth of a tissue construct within a perfusion bioreactor is examined. The cell population (and attendant extracellular matrix), culture medium, and porous scaffold are treated as distinct phases. The bioreactor system is represented by a two-dimensional channel containing a cell-seeded rigid porous scaffold (tissue construct), which is perfused with a culture medium. Through the prescription of appropriate functional forms for cell proliferation and extracellular matrix deposition rates, the model is used to compare the influence of cell density-, pressure-, and culture medium shear stress-regulated growth on the composition of the engineered tissue. The governing equations are derived in O’Dea et al. “A Three Phase Model for Tissue Construct Growth in a Perfusion Bioreactor,” Math. Med. Biol., in which the long-wavelength limit was exploited to aid analysis; here, finite element methods are used to construct two-dimensional solutions to the governing equations and to investigate thoroughly their behavior. Comparison of the total tissue yield and averaged pressures, velocities, and shear stress demonstrates that quantitative agreement between the two-dimensional and long-wavelength approximation solutions is obtained for channel aspect ratios of order 10−2 and that much of the qualitative behavior of the model is captured in the long-wavelength limit, even for relatively large channel aspect ratios. However, we demonstrate that in order to capture accurately the effect of mechanotransduction mechanisms on tissue construct growth, spatial effects in at least two dimensions must be included due to the inherent spatial variation of mechanical stimuli relevant to perfusion bioreactors, most notably, fluid shear stress, a feature not captured in the long-wavelength limit.


2003 ◽  
Vol 2003 (1) ◽  
pp. 1-23 ◽  
Author(s):  
T. Hayat ◽  
Y. Wang ◽  
A. M. Siddiqui ◽  
K. Hutter

This paper is devoted to the study of the two-dimensional flow of a Johnson-Segalman fluid in a planar channel having walls that are transversely displaced by an infinite, harmonic travelling wave of large wavelength. Both analytical and numerical solutions are presented. The analysis for the analytical solution is carried out for small Weissenberg numbers. (A Weissenberg number is the ratio of the relaxation time of the fluid to a characteristic time associated with the flow.) Analytical solutions have been obtained for the stream function from which the relations of the velocity and the longitudinal pressure gradient have been derived. The expression of the pressure rise over a wavelength has also been determined. Numerical computations are performed and compared to the perturbation analysis. Several limiting situations with their implications can be examined from the presented analysis.


1997 ◽  
Vol 330 ◽  
pp. 169-188 ◽  
Author(s):  
N. ALLEBORN ◽  
K. NANDAKUMAR ◽  
H. RASZILLIER ◽  
F. DURST

Two-dimensional laminar flow of an incompressible viscous fluid through a channel with a sudden expansion is investigated. A continuation method is applied to study the bifurcation structure of the discretized governing equations. The stability of the different solution branches is determined by an Arnoldi-based iterative method for calculating the most unstable eigenmodes of the linearized equations for the perturbation quantities. The bifurcation picture is extended by computing additional solution branches and bifurcation points. The behaviour of the critical eigenvalues in the neighbourhood of these bifurcation points is studied. Limiting cases for the geometrical and flow parameters are considered and numerical results are compared with analytical solutions for these cases.


1971 ◽  
Vol 38 (3) ◽  
pp. 646-650 ◽  
Author(s):  
S. J. Allen ◽  
K. A. Kline

The equations governing the flow of a fluid with rigid, spherical substructure are summarized. A two-dimensional flow field is considered and applied to the geometry of a slider bearing. Order-of-magnitude arguments are used which reduce the governing equations to a system of coupled, linear, ordinary differential equations. The equations are solved subject to appropriate boundary conditions and the effects of substructure discussed with the help of a specific numerical example.


2015 ◽  
Vol 138 (4) ◽  
Author(s):  
S. Maity ◽  
Y. Ghatani ◽  
B. S. Dandapat

The two-dimensional flow of a thin nanoliquid film over an unsteady stretching sheet is studied under the assumption of planar film thickness when the sheet is heated/cooled along the stretching direction. The governing equations of momentum, energy are solved numerically by using finite difference method. The rate of film thinning decreases with the increase in the nanoparticle volume fraction. On the other hand, thermocapillary parameter influences the film thinning. A boundary within the film is delineated such that the sign of Tz changes depending on the stretching distance from the origin. Further the boundary for Tz > 0 enlarges when the volume fraction of the nanoparticle increases.


Open Physics ◽  
2015 ◽  
Vol 13 (1) ◽  
Author(s):  
Hassan Rachid

AbstractIn the present study,we investigate the unsteady peristaltic transport of a viscoelastic fluid with fractional Burgers’ model in an inclined tube. We suppose that the viscosity is variable in the radial direction. This analysis has been carried out under low Reynolds number and long-wavelength approximations. An analytical solution to the problem is obtained using a fractional calculus approach. Figures are plotted to show the effects of angle of inclination, Reynolds number, Froude number, material constants, fractional parameters, parameter of viscosity and amplitude ratio on the pressure gradient, pressure rise, friction force, axial velocity and on the mechanical efficiency.


2010 ◽  
Vol 65 (8-9) ◽  
pp. 697-704 ◽  
Author(s):  
Tasawar Hayat ◽  
Zaheer Asghar

The purpose of this paper is to highlight the combined effects of heat transfer and slip characteristics of magnetohydrodynamic (MHD) fluid with variable viscosity in a channel. The slip condition is imposed in terms of shear stress. An analysis is performed to derive the perturbation solution for long wavelength and small Reynolds number assumptions. Expressions of stream function, temperature and heat transfer coefficient are constructed and discussed


2018 ◽  
Vol 7 (4.10) ◽  
pp. 484 ◽  
Author(s):  
S. Sreenadh ◽  
G. Yasodhara ◽  
B. Sumalatha ◽  
A. N.S.Srinivas

This paper deals with peristaltic motion of electrically conducting nanofluid in a tapered asymmetric channel through a porous medium in presence of heat and mass transfer under the effect of slip conditions. The problem is reduced mathematically by a set of nonlinear partial differential equations which describe the conservation of mass, momentum, energy and concentration of nanoparticles. The non-dimensional form of these equations is simplified under the assumption of long wavelength and low Reynolds number. The coupled governing equations are solved analytically. The expressions for velocity, stream function, temperature and concentration are derived. The results have been presented graphically for the various interested emerging parameters and the obtained results are discussed in detail. It is observed that the magnitude of the velocity decreases in the middle of the channel while it increases near the channel walls with an increase in the non-uniform parameter  It is also noticed that the nanoparticle temperature increases with increasing thermal slip parameter . The present result coincides with the findings of Kothandapani and Prakash [19].  


Sign in / Sign up

Export Citation Format

Share Document