Monitoring nicotine intake from e-cigarettes: measurement of parent drug and metabolites in oral fluid and plasma

Author(s):  
Esther Papaseit ◽  
Magí Farré ◽  
Silvia Graziano ◽  
Roberta Pacifici ◽  
Clara Pérez-Mañá ◽  
...  

AbstractBackground:Electronic cigarettes (e-cig) known as electronic nicotine devices recently gained popularity among smokers. Despite many studies investigating their safety and toxicity, few examined the delivery of e-cig-derived nicotine and its metabolites in alternative biological fluids.Methods:We performed a randomized, crossover, and controlled clinical trial in nine healthy smokers. Nicotine (NIC), cotinine (COT), and trans-3′-hydroxycotinine (3-HCOT) were measured in plasma and oral fluid by liquid chromatography-tandem mass spectrometry after consumption of two consecutive e-cig administrations or two consecutive tobacco cigarettes.Results:NIC and its metabolites were detected both in oral fluid and plasma following both administration conditions. Concentrations in oral fluid resulted various orders of magnitude higher than those observed in plasma. Oral fluid concentration of tobacco cigarette and e-cig-derived NIC peaked at 15 min after each administration and ranged between 1.0 and 1396 μg/L and from 0.3 to 860 μg/L; those of COT between 52.8 and 110 μg/L and from 33.8 to 94.7 μg/L; and those of 3-HCOT between 12.4 and 23.5 μg/L and from 8.5 to 24.4 μg/L. The oral fluid to plasma concentration ratio of both e-cig- and tobacco cigarette-derived NIC peaked at 15 min after both administrations and correlated with oral fluid NIC concentration.Conclusions:The obtained results support the measurement of NIC and metabolites in oral fluid in the assessment of intake after e-cig use and appear to be a suitable alternative to plasma when monitoring nicotine delivery from e-cig for clinical and toxicological studies.

2014 ◽  
Vol 10 (3) ◽  
pp. 177 ◽  
Author(s):  
Jennifer M. Cao, BS ◽  
Joseph D. Ma, PharmD ◽  
Candis M. Morello, PharmD, CDE ◽  
Rabia S. Atayee, PharmD, BCPS ◽  
Brookie M. Best, PharmD, MAS

Objective: Hydrocodone undergoes metabolism via cytochrome P450 (CYP) 3A4 (N-demethylation) to norhydrocodone and via CYP2D6 (O-demethylation) to hydromorphone. Hydrocodone, hydromorphone, and norhydrocodone are excreted in urine and secreted in saliva. The goal was to characterize hydrocodone and its metabolites in oral fluid specimens of a pain population and compare to urine specimens.Design: This retrospective analysis included more than 8,500 oral fluid specimens and more than 250,000 urine specimens collected between March and June 2012 that were sent to Millennium Laboratories (San Diego, CA) and analyzed for hydrocodone, hydromorphone, and norhydrocodone using liquid chromatography-tandem mass spectrometry. Statistical analyses and linear regressions were conducted using Microsoft Excel® 2010 and OriginPro v8.6.Results: The median oral fluid concentrations of hydrocodone and norhydrocodone were 122 and 7.7 ng/mL, respectively. However, the oral fluid concentrations of hydromorphone were below detection in many specimens (<1 ng/mL). The positive detection rate of parent drug and metabolites in oral fluid (17-31 percent detection rates) was much lower than in urine (63-75 percent detection rates). The geometric median metabolic ratio (MR) of norhydrocodone to hydrocodone was 0.07 in oral fluid and 1.2 in urine. The observed hydrocodone oral fluid concentrations were approximately 10-fold greater than previously reported plasma concentrations.Conclusion: Oral fluid had a much lower norhydrocodone to hydrocodone MR compared to urine. Reference ranges for oral fluid drug concentrations should not be extrapolated from plasma ranges. The observed ranges of secreted hydrocodone and metabolite concentrations in oral fluid should help determine reference ranges for medication monitoring.


2020 ◽  
Vol 41 (3) ◽  
pp. 192-197
Author(s):  
Sherry S. Zhou ◽  
Alan P. Baptist

Background: There has been a striking increase in electronic cigarette (EC) use in the United States. The beliefs and practices toward ECs among physicians are unknown. Objective: The purpose of this study was to investigate EC practice patterns among allergists, pulmonologists, and primary care physicians. Methods: An anonymous survey was sent to physicians. The survey contained 32 questions and addressed issues related to demographics, cessation counseling behaviors, personal use, and knowledge and beliefs about ECs. Statistical analysis was performed by using analysis of variance, the Pearson χ2 test, Fisher exact test, and logistic regression. Results: A total of 291 physicians completed the survey (222 primary care physicians, 33 pulmonologists, and 36 allergists) for a response rate of 46%. The allergists asked about tobacco cigarette use as frequently as did the pulmonologists and more than the primary care physicians (p < 0.001), but they rarely asked about EC use. The pulmonologists scored highest on self-reported knowledge on ECs, although all the groups answered <40% of the questions correctly. The allergists did not feel as comfortable about providing EC cessation counseling as did the pulmonologists and primary care physicians (p < 0.001). All three groups were equally unlikely to recommend ECs as a cessation tool for tobacco cigarette users. Conclusion: Allergists lacked knowledge and confidence in providing education and cessation counseling for EC users. As the number of patients who use these products continues to increase, there is an urgent need for all physicians to be comfortable and knowledgeable with counseling about ECs.


Author(s):  
Lin Lin ◽  
Piyadarsha Amaratunga ◽  
Jerome Reed ◽  
Pornkamol Huang ◽  
Bridget Lorenz Lemberg ◽  
...  

Abstract Quantitative analysis of Δ9-tetrahydrocannabinol (Δ9-THC) in oral fluid has gained increasing interest in clinical and forensic toxicology laboratories. New medicinal and/or recreational cannabinoid products require laboratories to distinguish different patterns of cannabinoid use. This study validated a high-performance liquid chromatography-tandem mass spectrometry method for 13 different cannabinoids, including (-)-trans-Δ8-tetrahydrocannabinol (Δ8-THC), (-)-trans-Δ9-tetrahydrocannabinol (Δ9-THC), cannabidiol (CBD), Δ9-tetrahydrocannabinolic acid-A (Δ9-THCA-A), cannabidiolic acid (CBDA), 11-hydroxy-Δ9-tetrahydrocannabinol (11-OH-Δ9-THC), 11-nor-9-carboxy-Δ9-tetrahydrocannabinol (Δ9-THCCOOH), tetrahydrocannabivarin (THCV), cannabidivarin (CBDV), cannabidiorcol (CBD-C1), cannabichromene (CBC), cannabinol (CBN) and cannabigerol (CBG), in oral fluid. Baseline separation was achieved in the entire quantitation range between Δ9-THC and its isomer Δ8-THC. The quantitation range of Δ9-THC, Δ8-THC and CBD was from 0.1 to 800 ng/mL. Two hundred human subject oral fluid samples were analyzed with this method after solid phase extraction. Among the 200 human subject oral fluid samples, all 13 cannabinoid analytes were confirmed in at least one sample. Δ8-THC was confirmed in 11 samples, with or without the presence of Δ9-THC. A high concentration of 11-OH-Δ9-THC or Δ9-THCCOOH (&gt;400 ng/mL) was confirmed in three samples. CBD, Δ9-THCA-A, THCV, CBN and CBG were confirmed in 74, 39, 44, 107 and 112 of the 179 confirmed Δ9-THC-positive samples, respectively. The quantitation of multiple cannabinoids and metabolites in oral fluid simultaneously provides valuable information for revealing cannabinoid consumption and interpreting cannabinoid-induced driving impairment.


Author(s):  
Ana Carolina Furiozo Arantes ◽  
Kelly Francisco da Cunha ◽  
Marilia Santoro Cardoso ◽  
Karina Diniz Oliveira ◽  
Jose Luiz Costa

Abstract Purpose We developed and validated a method for quantitative analysis of 50 psychoactive substances and metabolites (antidepressants, benzodiazepines and opioids) in oral fluid samples using simple liquid–liquid extraction procedure followed by liquid chromatography–tandem mass spectrometry (LC–MS/MS). Method Oral fluid samples were collected using Quantisal™ device and extracted by liquid–liquid extraction with 1.0 mL of methyl tert-butyl ether and then analyzed using LC–MS/MS. Results The method attended method validation criteria, with limits of quantification as low as 0.5 and 1.0 ng/mL, and linearity between 0.5–50.0 ng/mL for antidepressants, 0.5–25.0 ng/mL for benzodiazepines and 1.0–50.0 ng/mL to opioids. During method validation, bias and imprecision values were not greater than 16 and 20%, respectively. Ionization suppression/enhancement bias results were not greater than 25%. No evidence of carryover was observed. Sample stability studies showed that almost all analytes were stable at 25 °C for 3 days and at 4 °C for 7 days. Freeze–thaw cycles stability showed that most antidepressants and opioids were stable under these conditions. Autosampler stability study showed that all analytes were stable for 24 h, except for nitrazepam and 7-aminoclonazepam. Thirty-eight authentic oral fluid samples were analyzed; 36.8% of the samples were positive for 2 drugs. Citalopram was the most common drug found, followed by venlafaxine. Conclusions The method was validated according to international recommendations for the 50 analytes, showing low limits of quantification, good imprecision and bias values, using simple liquid–liquid extraction, and was successfully applied to authentic oral fluid samples analysis.


Molecules ◽  
2019 ◽  
Vol 24 (24) ◽  
pp. 4618 ◽  
Author(s):  
Paweł Kubica

The content of tobacco-specific nitrosamines (TSNAs) possessing carcinogenic properties has been an important area of research since replacement liquids were introduced for e-cigarettes. A method for determining N′-nitrosonornicotine (NNN), 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), N′-nitrosoanatabine (NAT), and N′-nitrosoanabasine (NAB) in replacement liquids for electronic cigarettes was developed using liquid chromatography–tandem mass spectrometry with electrospray ionisation (HPLC-ESI-MS/MS) in the multiple reaction monitoring mode. The sample preparation of replacement liquids was accomplished via the ultrasound-assisted solvent extraction of a porous membrane packed sample. The sample preparation proved to be successful in extracting the analytes, with recoveries from 87% to 105%, with coefficients of variation < 4.9%. Moreover, the linearity and limits of detection and quantitation (LOD, LOQ), together with repeatability and accuracy, were determined for the developed method. The proposed sample preparation and developed chromatographic method were successfully applied to the determination of TSNAs in 9 replacement liquid samples. The NNK and NNN were found to be most frequently detected (89 and 67%, respectively), with concentration ranges from 1.2–54.3 ng/mL and 4.1–30.2 ng/mL, respectively, while NAT was detected with frequency of 22% with range 1.7–2.5 ng/mL and NAB were found to be below the LOD in all samples.


Sign in / Sign up

Export Citation Format

Share Document