Long-term biological variation estimates of 13 hematological parameters in healthy Chinese subjects

2020 ◽  
Vol 58 (8) ◽  
pp. 1282-1290 ◽  
Author(s):  
Chenbin Li ◽  
Mingting Peng ◽  
Ji Wu ◽  
Zhongli Du ◽  
Hong Lu ◽  
...  

AbstractBackgroundThe complete blood count (CBC) is a basic test routinely ordered by physicians as a part of initial diagnostic work-up on their patients. To ensure safe clinical application of the CBC, reliable biological variation (BV) data are needed to establish analytical performance specifications. Our aim was to define the BV of CBC parameters using a rigorous protocol that is compliant with the Biological Variation Data Critical Appraisal Checklist (BIVAC) provided by the European Federation of Clinical Chemistry and Laboratory Medicine.MethodsBlood samples drawn from 41 healthy Chinese subjects (22 females and 19 males; 23–59 years of age) once monthly for 6 consecutive months were analyzed using an ABX Pentra 80 instrument. The instrument was precisely calibrated. All samples were analyzed in duplicate for 13 CBC parameters. The data were assessed for outliers, normality, and variance homogeneity prior to nested ANOVA. Gender-stratified within-subject (CVI) and between-subject (CVG) BV estimates were calculated.ResultsThe number of remaining data for each subject was 442–484 after removing outliers. No significant differences existed between female/male CVI estimates. Except for leukocytes, neutrophils, and lymphocytes, the mean values of 10 parameters differed significantly between genders, rendering partitioning of CVG data between genders. No significant differences were detected between most BV estimates and recently published estimates representing a Europid population.ConclusionsMost BV estimates in BIVAC-compliant studies are similar. The turnover time of blood cells and age distribution of participants should be considered in a CBC BV study. Our study will contribute to global BV estimates and future studies.

2018 ◽  
Vol 56 (8) ◽  
pp. 1309-1318 ◽  
Author(s):  
Abdurrahman Coşkun ◽  
Anna Carobene ◽  
Meltem Kilercik ◽  
Mustafa Serteser ◽  
Sverre Sandberg ◽  
...  

Abstract Background: The complete blood count (CBC) is used to evaluate health status in the contexts of various clinical situations such as anemia, infection, inflammation, trauma, malignancies, etc. To ensure safe clinical application of the CBC, reliable biological variation (BV) data are required. The study aim was to define the BVs of CBC parameters employing a strict protocol. Methods: Blood samples, drawn from 30 healthy subjects (17 females, 13 males) once weekly for 10 weeks, were analyzed using a Sysmex XN 3000 instrument. The data were assessed for normality, trends, outliers and variance homogeneity prior to coefficient of variation (CV)-analysis of variance (ANOVA). Sex-stratified within-subject (CVI) and between-subjects (CVG) BV estimates were determined for 21 CBC parameters. Results: For leukocyte parameters, with the exception of lymphocytes and basophils, significant differences were found between female/male CVI estimates. The mean values of all erythrocyte-, reticulocyte- and platelet parameters differed significantly between the sexes, except for mean corpuscular hemoglobin concentration, mean corpuscular volume and platelet numbers. Most CVI and CVG estimates appear to be lower than those previously published. Conclusions: Our study, based on a rigorous protocol, provides updated and more stringent BV estimates for CBC parameters. Sex stratification of data is necessary when exploring the significance of changes in consecutive results and when setting analytical performance specifications.


2019 ◽  
Vol 58 (1) ◽  
pp. 25-32 ◽  
Author(s):  
Abdurrahman Coskun ◽  
Federica Braga ◽  
Anna Carobene ◽  
Xavier Tejedor Ganduxe ◽  
Aasne K. Aarsand ◽  
...  

Abstract Background Interpretation of the complete blood count (CBC) parameters requires reliable biological variation (BV) data. The aims of this study were to appraise the quality of publications reporting BV data for CBC parameters by applying the BV Data Critical Appraisal Checklist (BIVAC) and to deliver global BV estimates based on BIVAC compliant studies. Methods Relevant publications were identified by a systematic literature search and evaluated for their compliance with the 14 BIVAC criteria, scored as A, B, C or D, indicating decreasing compliance. Global CVI and CVG estimates with 95% CI were delivered by a meta-analysis approach using data from BIVAC compliant papers (grades A–C). Results In total, 32 studies were identified; four received a BIVAC grade A, 2 B, 20 C and 6 D. Meta-analysis derived CVI and CVG estimates were generally lower or in line with those published in a historical BV database available online. Except for reticulocytes, CVI estimates of erythrocyte related parameters were below 3%, whereas platelet (except MPV and PDW) and leukocyte related parameters ranged from 5% to 15%. Conclusions A systematic review of CBC parameters has provided updated, global estimates of CVI and CVG that will be included in the newly published European Federation of Clinical Chemistry and Laboratory Medicine BV Database.


2020 ◽  
Vol 9 (9) ◽  
pp. e768997698
Author(s):  
Julio Cesar Oliveira Dias ◽  
Cristina Mattos Veloso ◽  
Madriano Christilis da Rocha Santos ◽  
Carlos Thiago Silveira Alvim Mendes de Oliveira ◽  
Camila Oliveira Silveira

This study evaluated the adaptive capacity and variations in physiological parameters of four male goats originate from a temperate region (Alpine breed) in a tropical climate over twelve months. The ambient temperature, relative humidity, and temperature via a black globe thermometer were evaluated to calculate the black globe temperature and humidity index; they were collected five times during the day, three times during the week, and during the four annual seasons. Every fortnight throughout the experimental period, respiratory and heart rates as well as rectal and surface temperatures of the animals were measured in the morning, and blood samples were acquired for hormonal levels (cortisol, T3, and T4) and complete blood count. There was a difference between the mean values of surface temperature, respiratory rate, hormones, and some hematological parameters (total protein and monocytes) between the seasons (P<0.05). However, no differences were observed in cases of heat stress, based on the fact that physiological parameters were within normal and expected limits for goats. Thus, it is concluded that the male goats of the Alpine breed, when reared intensively, maintain homeothermia and are greatly adaptable to the conditions of the tropical climate.


2018 ◽  
Vol 56 (10) ◽  
pp. 1591-1597 ◽  
Author(s):  
Eric S. Kilpatrick ◽  
Sverre Sandberg

Abstract The European Federation of Clinical Chemistry and Laboratory Medicine (EFLM) has initiated many harmonization activities in all phases of the examination process. The EFLM is dealing with both the scientific and the educational aspects of harmonization, with the intention of disseminating best practice in laboratory medicine throughout Europe. Priorities have been given (1) to establish a standard for conducting and assessing biological variation studies and to construct an evidence based EFLM webpage on biological variation data, (2) to harmonize preanalytical procedures by producing European guidelines, (3) to improve test ordering and interpretation, (4) to produce other common European guidelines for laboratory medicine and play an active part in development of clinical guidelines, (5) to establish a common basis for communicating laboratory results to patients, (6) to harmonize units of measurement throughout Europe, (7) to harmonize preanalytical procedures in molecular diagnostics and (8) to harmonize and optimize test evaluation procedures. The EFLM is also now launching the 5th version of the European Syllabus to help the education of European Specialists in Laboratory Medicine (EuSpLM), which is being supported by the development of e-learning courses. A register of EuSpLM is already established for members of National Societies in EU countries, and a similar register will be established for specialists in non-EU countries.


2017 ◽  
Vol 63 (9) ◽  
pp. 1527-1536 ◽  
Author(s):  
Anna Carobene ◽  
Irene Marino ◽  
Abdurrahman Coşkun ◽  
Mustafa Serteser ◽  
Ibrahim Unsal ◽  
...  

Abstract BACKGROUND The European Federation of Clinical Chemistry and Laboratory Medicine (EFLM) European Biological Variation Study (EuBIVAS) has been established to deliver rigorously determined biological variation (BV) indices. EuBIVAS determined BV for serum creatinine using the enzymatic and alkaline picrate measurement methods. METHOD In total, 91 healthy individuals (38 males, 53 females; age range, 21–69 years) were bled for 10 consecutive weeks at 6 European laboratories. An equivalent protocol was followed at each center. Sera were stored at −80 °C before analysis. Analyses for each patient were performed in duplicate within a single run on an ADVIA 2400 system (San Raffaele Hospital, Milan). The data were subjected to outlier and homogeneity analysis before performing CV-ANOVA to determine BV and analytical variation (CVA) estimates with confidence intervals (CI). RESULTS The within-subject BV estimates [CVI (95% CI)] were similar for enzymatic [4.4% (4.2–4.7)] and alkaline picrate [4.7% (4.4–4.9)] methods and lower than the estimate presently available online (CVI = 5.9%). No significant male/female BV differences were found. Significant differences were observed in mean creatinine values between men and women and between Turkish individuals and those of other nationalities. Between-subject BV (CVG) estimates, stratified accordingly, produced CVG values similar to historical BV data. CVA was 1.1% for the enzymatic and 4.4% for alkaline picrate methods, indicating that alkaline picrate methods fail to fulfill analytical performance specifications for imprecision (CVAPS). CONCLUSIONS The serum creatinine CVI obtained by EuBIVAS specifies a more stringent CVAPS than previously identified. The alkaline picrate method failed to meet this CVAPS, raising questions regarding its future use.


Author(s):  
Anna Carobene ◽  
Marta Strollo ◽  
Niels Jonker ◽  
Gerhard Barla ◽  
William A. Bartlett ◽  
...  

AbstractBackground:Biological variation (BV) data have many fundamental applications in laboratory medicine. At the 1st Strategic Conference of the European Federation of Clinical Chemistry and Laboratory Medicine (EFLM) the reliability and limitations of current BV data were discussed. The EFLM Working Group on Biological Variation is working to increase the quality of BV data by developing a European project to establish a biobank of samples from healthy subjects to be used to produce high quality BV data.Methods:The project involved six European laboratories (Milan, Italy; Bergen, Norway; Madrid, Spain; Padua, Italy; Istanbul, Turkey; Assen, The Netherlands). Blood samples were collected from 97 volunteers (44 men, aged 20–60 years; 43 women, aged 20–50 years; 10 women, aged 55–69 years). Initial subject inclusion required that participants completed an enrolment questionnaire to verify their health status. The volunteers provided blood specimens once per week for 10 weeks. A short questionnaire was completed and some laboratory tests were performed at each sampling consisting of blood collected under controlled conditions to provide serum, KResults:Samples from six out of the 97 enroled subjects were discarded as a consequence of abnormal laboratory measurements. A biobank of 18,000 aliquots was established consisting of 120 aliquots of serum, 40 of EDTA-plasma, and 40 of citrated-plasma from each subject. The samples were stored at –80 °C.Conclusions:A biobank of well-characterised samples collected under controlled conditions has been established delivering a European resource to enable production of contemporary BV data.


2018 ◽  
Vol 64 (9) ◽  
pp. 1380-1393 ◽  
Author(s):  
Aasne K Aarsand ◽  
Jorge Díaz-Garzón ◽  
Pilar Fernandez-Calle ◽  
Elena Guerra ◽  
Massimo Locatelli ◽  
...  

Abstract BACKGROUND The European Federation of Clinical Chemistry and Laboratory Medicine European Biological Variation Study (EuBIVAS) has been established to deliver rigorously determined data describing biological variation (BV) of clinically important measurands. Here, EuBIVAS-based BV estimates of serum electrolytes, lipids, urea, uric acid, total protein, total bilirubin, direct bilirubin, and glucose, as well as their associated analytical performance specifications (APSs), are presented. METHOD Samples were drawn from 91 healthy individuals (38 male, 53 female; age range, 21–69 years) for 10 consecutive weeks at 6 European laboratories. Samples were stored at −80 °C before duplicate analysis of all samples on an ADVIA 2400 (Siemens Healthineers). Outlier and homogeneity analyses were performed, followed by CV-ANOVA on trend-corrected data, when relevant, to determine BV estimates with CIs. RESULTS The within-subject BV (CVI) estimates of all measurands, except for urea and LDL cholesterol, were lower than estimates available in an online BV database, with differences being most pronounced for HDL cholesterol, glucose, and direct bilirubin. Significant differences in CVI for men and women/women &lt;50 years of age were evident for uric acid, triglycerides, and urea. The CVA obtained for sodium and magnesium exceeded the EuBIVAS-based APS for imprecision. CONCLUSIONS The EuBIVAS, which is fully compliant with the recently published Biological Variation Data Critical Appraisal Checklist, has produced well-characterized, high-quality BV estimates utilizing a stringent experimental protocol. These new reference data deliver revised and more exacting APS and reference change values for commonly used clinically important measurands, thus having direct relevance to diagnostics manufacturers, service providers, clinical users, and ultimately patients.


Proteomes ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 47
Author(s):  
Lou-Ann C. Andersen ◽  
Nicolai Bjødstrup Palstrøm ◽  
Axel Diederichsen ◽  
Jes Sanddal Lindholt ◽  
Lars Melholt Rasmussen ◽  
...  

Specific plasma proteins serve as valuable markers for various diseases and are in many cases routinely measured in clinical laboratories by fully automated systems. For safe diagnostics and monitoring using these markers, it is important to ensure an analytical quality in line with clinical needs. For this purpose, information on the analytical and the biological variation of the measured plasma protein, also in the context of the discovery and validation of novel, disease protein biomarkers, is important, particularly in relation to for sample size calculations in clinical studies. Nevertheless, information on the biological variation of the majority of medium-to-high abundant plasma proteins is largely absent. In this study, we hypothesized that it is possible to generate data on inter-individual biological variation in combination with analytical variation of several hundred abundant plasma proteins, by applying LC-MS/MS in combination with relative quantification using isobaric tagging (10-plex TMT-labeling) to plasma samples. Using this analytical proteomic approach, we analyzed 42 plasma samples prepared in doublets, and estimated the technical, inter-individual biological, and total variation of 265 of the most abundant proteins present in human plasma thereby creating the prerequisites for power analysis and sample size determination in future clinical proteomics studies. Our results demonstrated that only five samples per group may provide sufficient statistical power for most of the analyzed proteins if relative changes in abundances >1.5-fold are expected. Seventeen of the measured proteins are present in the European Federation of Clinical Chemistry and Laboratory Medicine (EFLM) Biological Variation Database, and demonstrated remarkably similar biological CV’s to the corresponding CV’s listed in the EFLM database suggesting that the generated proteomic determined variation knowledge is useful for large-scale determination of plasma protein variations.


2018 ◽  
Vol 64 (3) ◽  
pp. 501-514 ◽  
Author(s):  
Aasne K Aarsand ◽  
Thomas Røraas ◽  
Pilar Fernandez-Calle ◽  
Carmen Ricos ◽  
Jorge Díaz-Garzón ◽  
...  

Abstract BACKGROUND Concern has been raised about the quality of available biological variation (BV) estimates and the effect of their application in clinical practice. A European Federation of Clinical Chemistry and Laboratory Medicine Task and Finish Group has addressed this issue. The aim of this report is to (a) describe the Biological Variation Data Critical Appraisal Checklist (BIVAC), which verifies whether publications have included all essential elements that may impact the veracity of associated BV estimates, (b) use the BIVAC to critically appraise existing BV publications on enzymes, lipids, kidney, and diabetes-related measurands, and (c) apply metaanalysis to deliver a global within-subject BV (CVI) estimate for alanine aminotransferase (ALT). METHODS In the BIVAC, publications were rated as A, B, C, or D, indicating descending compliance for 14 BIVAC quality items, focusing on study design, methodology, and statistical handling. A D grade indicated that associated BV estimates should not be applied in clinical practice. Systematic searches were applied to identify BV studies for 28 different measurands. RESULTS In total, 128 publications were identified, providing 935 different BV estimates. Nine percent achieved D scores. Outlier analysis and variance homogeneity testing were scored as C in &gt;60% of 847 cases. Metaanalysis delivered a CVI estimate for ALT of 15.4%. CONCLUSIONS Application of BIVAC to BV publications identified deficiencies in required study detail and delivery, especially for statistical analysis. Those deficiencies impact the veracity of BV estimates. BV data from BIVAC-compliant studies can be combined to deliver robust global estimates for safe clinical application.


Sign in / Sign up

Export Citation Format

Share Document