scholarly journals Generation of an azide-modified extracellular matrix by adipose-derived stem cells using metabolic glycoengineering

2019 ◽  
Vol 5 (1) ◽  
pp. 393-395 ◽  
Author(s):  
Svenja Nellinger ◽  
Silke Keller ◽  
Alexander Southan ◽  
Valentin Wittmann ◽  
Ann-Cathrin Volz ◽  
...  

AbstractNatural extracellular matrix (ECM) represents an ideal biomaterial for tissue engineering and regenerative medicine approaches. For further functionalization, there is a need for specific addressable functional groups within this biomaterial. Metabolic glycoengineering (MGE) provides a technique to incorporate modified monosaccharide derivatives into the ECM during their assembly, which was shown by us earlier for the production of a modified fibroblast-derived dermal ECM. In this study, adipose-derived stem cells (ASCs) were treated with the azide-modified monosaccharide derivate 1,3,4,6-tetra-O-acetyl-N-azidoacetylgalactosamine (Ac4GalNAz). Toxicity and viability assays after 24 h and 72 h incubation revealed high biocompatibility of Ac4GalNAz in contact with ASCs. The successful incorporation of the functional azide groups into the glycocalyx and the ECM of the ASCs was proven by conjugation with a fluorescent dye via a copper-catalyzed click reaction. Thus, Ac4GalNAz in combination with ASCs was confirmed to achieve an azidemodified ECM as a multifunctional biomaterial for further applications.

2014 ◽  
Vol 5 ◽  
pp. BTRI.S12331 ◽  
Author(s):  
John W. Cassidy

Modern medicine faces a growing crisis as demand for organ transplantations continues to far outstrip supply. By stimulating the body's own repair mechanisms, regenerative medicine aims to reduce demand for organs, while the closely related field of tissue engineering promises to deliver “of-the-self” organs grown from patients' own stem cells to improve supply. To deliver on these promises, we must have reliable means of generating complex tissues. Thus far, the majority of successful tissue engineering approaches have relied on macroporous scaffolds to provide cells with both mechanical support and differentiative cues. In order to engineer complex tissues, greater attention must be paid to nanoscale cues present in a cell's microenvironment. As the extracellular matrix is capable of driving complexity during development, it must be understood and reproduced in order to recapitulate complexity in engineered tissues. This review will summarize current progress in engineering complex tissue through the integration of nanocomposites and biomimetic scaffolds.


2012 ◽  
Vol 18 (1-2) ◽  
pp. 80-92 ◽  
Author(s):  
Ji Suk Choi ◽  
Beob Soo Kim ◽  
Jae Dong Kim ◽  
Young Chan Choi ◽  
Hee Young Lee ◽  
...  

2003 ◽  
Vol 774 ◽  
Author(s):  
A. Hari Reddi

AbstractRegenerative medicine is the science of design and manufacture of parts for functional restoration of damaged tissues due to cancer, disease and trauma. Morphogenesis is the developmental cascade of pattern formation, body plan establishment and differentiation of tissues culminating in adult form. Regeneration in general, recapitulates in parts, embryonic morphogenesis. Thus, the principles of morphogenesis can be applied to tissue engineering for regenerative medicine and surgery. The threekey ingredients for tissue engineering and regenerative medicine are inductive morphogens, responding stem cells, and extracellular matrix materials. Therefore bioactive morphogens can be integrated into materials for functional restoration by tissue engineering. A morphogen is a morphogenetic protein signal that acts on responding stem cells. Bone morphogenesis is induced by bone morphogenetic proteins (BMPs). BMPs play a role in pattern formation, cell differentiation, maintenance and regeneration of tissues. BMPs are pleiotropic and act on chemotaxis, mitosis and differentiation of progenitor stem cells. There are nearly twenty BMPs in the human genome. BMPs have actions beyond bone in development of teeth, heart, kidney, eye, skin, and brain. Thus, BMPs may be called body morphogenetic proteins. Stem cells are primordial cells with unlimited replicative potential and can be programmed by morphogens such as BMPs. Extracellular matrix is the native scaffolding material that can be used to deliver morphogens such as BMPs for tissue engineering of bone. Biomimetic materials are typically synthetic, polymeric structures that mimic extracellular matrix scaffolding by presenting the cellular binding sites found within collagens, fibronectin, proteoglycans and glycoproteins. Materials that mimic extracellular matrix scaffolding such as BMPs bind to collagens I&IV, heparan sulfate and heparin. BMPs bound to collagen acts as a composite biomaterial to initiate bone formation and the shape can be molded by an appropriate template. In addition to including BMPs in a carrier matrix, the geometry of the carrier matrix is critical for optimal tissue engineering. For example: collagen particles smaller than 44μm are feeble in bone induction compared to the coarse (420μm) particles. Gene therapy approaches using genes for morphogenesis such as BMPs allows a sustained, prolonged secretion of gene products. Thus, morphogens integrated into biomaterials may be useful in regenerative medicine.


2019 ◽  
Vol 8 (5) ◽  
pp. 675
Author(s):  
Katarzyna Kornicka ◽  
Florian Geburek ◽  
Michael Röcken ◽  
Krzysztof Marycz

With this Editorial, we introduce the Special Issue “Adipose-Derived Stem Cells and Their Extracellular Microvesicles (ExMVs) for Tissue Engineering and Regenerative Medicine Applications” to the scientific community. In this issue, we focus on regenerative medicine, stem cells, and their clinical application.


2013 ◽  
Vol 8 (4) ◽  
pp. 331-336
Author(s):  
Bernard Mvula ◽  
Heidi Abrahamse

AbstractTissue engineering and regenerative medicine has become the treatment of choice for several degenerative diseases. It involves the repairing or replacing of diseased or damaged cells or tissues. Stem cells have a key role to play in this multidisciplinary science because of their capacity to differentiate into several lineages. Adipose derived stem cells (ADSCs) are adult mesenchymal stem cells that are easily harvested and have the capacity to differentiate into cartilage, bone, smooth muscle, fat, liver and nerve cells. ADSCs have been found to differentiate into smooth muscle cells which play major roles in diseases such as asthma, hypertension, cancer and arteriosclerosis. Low Intensity Laser Irradiation (LILI), which involves the application of monochromatic light, has been found to increase viability, proliferation and differentiation in several types of cells including ADSCs. This review discusses the role of ADSCs, smooth muscle cells and LILI in the science of tissue engineering and regenerative medicine.


2016 ◽  
Vol 2016 ◽  
pp. 1-19 ◽  
Author(s):  
Ru Dai ◽  
Zongjie Wang ◽  
Roya Samanipour ◽  
Kyo-in Koo ◽  
Keekyoung Kim

Adipose-derived stem cells (ASCs) are a mesenchymal stem cell source with properties of self-renewal and multipotential differentiation. Compared to bone marrow-derived stem cells (BMSCs), ASCs can be derived from more sources and are harvested more easily. Three-dimensional (3D) tissue engineering scaffolds are better able to mimic thein vivocellular microenvironment, which benefits the localization, attachment, proliferation, and differentiation of ASCs. Therefore, tissue-engineered ASCs are recognized as an attractive substitute for tissue and organ transplantation. In this paper, we review the characteristics of ASCs, as well as the biomaterials and tissue engineering methods used to proliferate and differentiate ASCs in a 3D environment. Clinical applications of tissue-engineered ASCs are also discussed to reveal the potential and feasibility of using tissue-engineered ASCs in regenerative medicine.


2019 ◽  
Vol 39 (5) ◽  
Author(s):  
Xiaofang Yu ◽  
Yucang He ◽  
Zhuojie Chen ◽  
Yao Qian ◽  
Jingping Wang ◽  
...  

Abstract Background: Adipose-derived stem cells have attracted significant interest, especially in stem cell therapy and regenerative medicine. However, these cells undergo gradual premature senescence in long-term cultures, which are essential for clinical applications that require cell-assisted lipotransfer or tissue repair. Methods: Since the extracellular matrix forms the microenvironment around stem cells in vitro and regulates self-renewal and multipotency in part by slowing down stem cell aging, we evaluated its potential to protect against senescence, using H2O2-induced adipose-derived stem cells as a model. Results: We found that supplementing cultures with decellularized extracellular matrix harvested from the same cells significantly promotes proliferation and reverses signs of senescence, including decreased multipotency, increased expression of senescence-associated β-galactosidase, and accumulation of reactive oxygen species. Conclusion: These findings suggest a novel approach in which an autologous decellularized extracellular matrix is used to prevent cellular senescence to enable the use of adipose-derived stem cells in regenerative medicine.


Sign in / Sign up

Export Citation Format

Share Document