scholarly journals Autologous decellularized extracellular matrix protects against H2O2-induced senescence and aging in adipose-derived stem cells and stimulates proliferation in vitro

2019 ◽  
Vol 39 (5) ◽  
Author(s):  
Xiaofang Yu ◽  
Yucang He ◽  
Zhuojie Chen ◽  
Yao Qian ◽  
Jingping Wang ◽  
...  

Abstract Background: Adipose-derived stem cells have attracted significant interest, especially in stem cell therapy and regenerative medicine. However, these cells undergo gradual premature senescence in long-term cultures, which are essential for clinical applications that require cell-assisted lipotransfer or tissue repair. Methods: Since the extracellular matrix forms the microenvironment around stem cells in vitro and regulates self-renewal and multipotency in part by slowing down stem cell aging, we evaluated its potential to protect against senescence, using H2O2-induced adipose-derived stem cells as a model. Results: We found that supplementing cultures with decellularized extracellular matrix harvested from the same cells significantly promotes proliferation and reverses signs of senescence, including decreased multipotency, increased expression of senescence-associated β-galactosidase, and accumulation of reactive oxygen species. Conclusion: These findings suggest a novel approach in which an autologous decellularized extracellular matrix is used to prevent cellular senescence to enable the use of adipose-derived stem cells in regenerative medicine.

2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Takashi Hoshiba ◽  
Guoping Chen ◽  
Chiho Endo ◽  
Hiroka Maruyama ◽  
Miyuki Wakui ◽  
...  

Stem cells are a promising cell source for regenerative medicine. Stem cell differentiation must be regulated for applications in regenerative medicine. Stem cells are surrounded by extracellular matrix (ECM)in vivo. The ECM is composed of many types of proteins and glycosaminoglycans that assemble into a complex structure. The assembly of ECM molecules influences stem cell differentiation through orchestrated intracellular signaling activated by many ECM molecules. Therefore, it is important to understand the comprehensive role of the ECM in stem cell differentiation as well as the functions of the individual ECM molecules. Decellularized ECM is a usefulin vitromodel for studying the comprehensive roles of ECM because it retains a native-like structure and composition. Decellularized ECM can be obtained fromin vivotissue ECM or ECM fabricated by cells culturedin vitro. It is important to select the correct decellularized ECM because each type has different properties. In this review, tissue-derived and cell-derived decellularized ECMs are compared asin vitroECM models to examine the comprehensive roles of the ECM in stem cell differentiation. We also summarize recent studies using decellularized ECM to determine the comprehensive roles of the ECM in stem cell differentiation.


2018 ◽  
Vol 15 (145) ◽  
pp. 20180388 ◽  
Author(s):  
Hannah Donnelly ◽  
Manuel Salmeron-Sanchez ◽  
Matthew J. Dalby

Mesenchymal stem cells, characterized by their ability to differentiate into skeletal tissues and self-renew, hold great promise for both regenerative medicine and novel therapeutic discovery. However, their regenerative capacity is retained only when in contact with their specialized microenvironment, termed the stem cell niche . Niches provide structural and functional cues that are both biochemical and biophysical, stem cells integrate this complex array of signals with intrinsic regulatory networks to meet physiological demands. Although, some of these regulatory mechanisms remain poorly understood or difficult to harness with traditional culture systems. Biomaterial strategies are being developed that aim to recapitulate stem cell niches, by engineering microenvironments with physiological-like niche properties that aim to elucidate stem cell-regulatory mechanisms, and to harness their regenerative capacity in vitro . In the future, engineered niches will prove important tools for both regenerative medicine and therapeutic discoveries.


2006 ◽  
Vol 18 (2) ◽  
pp. 208 ◽  
Author(s):  
A. S. Lima ◽  
S. A. Malusky ◽  
M. R. B. Mello ◽  
S. J. Lane ◽  
J. R. Rivera ◽  
...  

A primary concern in stem cell biology is that observations made in vitro may be an artifact of the in vitro culture environment. In vitro derived stem cells can be implanted into the environment from which they are derived so that their response to physiological conditions may be observed. Several important cellular characteristics need to be examined following the cell's reintroduction to the in vivo environment, including the potential for differentiation, proliferative ability, and life span. Studying implanted stem cells will assist in determining the potential for stem cell use in clinical therapies and provide further understanding of the role adult stem cells have in the adult body. Currently, the scientific literature is lacking a detailed description of the cellular response of adipose-derived stem cells (ADSCs) reintroduced to their exact tissue of origin. Thus, the aim of this study was to evaluate porcine ADSC growth in vivo and to analyze cell differentiation in vivo following injection of undifferentiated ADSCs into subcutaneous fat. Subcutaneous adipose tissue was isolated from the back fat of male pigs (11 months of age) and digested with 0.075% collagenase at 37�C for 90 min. The digested tissue was centrifuged at 200g for 10 min to obtain a cell pellet. The pellet was re-suspended with DMEM and the ADSCs were plated onto 75 cm2 flasks (5000-10 000 cells per cm2) and cultured in DMEM supplemented with 10% fetal bovine serum (FBS) and 1% gentamicin. Passage 3 ADSCs were labeled with fluorescent dye (PKH26; Sigma, St. Louis, MO, USA) and sorted by flow cytometry. After sorting, positive cells were washed and re-suspended in culture medium. For transplantation, 100 �L of cell suspension in DMEM containing one of four cell concentrations (0 (control); 30 000; 300 000; and 900 000 cells) were placed in a 1-mL syringe and injected into the subcutaneous back fat of recipient pigs (n = 2). Each pig had previously been tattooed with 12 13 � 13 squares to mark injection sites. The treatments were replicated three times within each animal. Two and three weeks after transplantation, animals were euthanized, the back fat containing the transplantation site was harvested, and the cells were disaggregated as described above. The buoyant adipocytes and pelleted ADSCs cells were then analyzed by flow cytometry. The results indicated that there were dose- and time-dependent increases in labeled ADSCs and labeled adipocytes in the fat samples with increasing cell number (from 0 to 300 000 cells). There was, however, a decrease in labeled ADSCs at the 900 000-cell dose, which is likely due to excess cells being transplanted or an immune reaction. Both of these aspects are currently being evaluated. In conclusion, undifferentiated ADSCs from swine can be isolated from and returned to the subcutaneous adipose layer and differentiate into mature adipocytes. This work was supported by the Council for Food and Agricultural Research (C-FAR) Sentinel Program, University of Illinois.


PLoS ONE ◽  
2021 ◽  
Vol 16 (4) ◽  
pp. e0250160
Author(s):  
Matthew Rusin ◽  
Nardine Ghobrial ◽  
Endre Takacs ◽  
Jeffrey S. Willey ◽  
Delphine Dean

Biomedical use of radiation is utilized in effective diagnostic and treatment tools, yet can introduce risks to healthy tissues. High energy photons used for diagnostic purposes have high penetration depth and can discriminate multiple tissues based on attenuation properties of different materials. Likewise, the ability to deposit energy at various targets within tumors make the use of photons effective treatment for cancer. Radiation focused on a tumor will deposit energy when it interacts with a biological structure (e.g. DNA), which will result in cell kill should repair capacity of the tissue be overwhelmed. Likewise, damage to normal, non-cancerous tissues is a consequence of radiation that can lead to acute or late, chronic toxicity profiles. Adipose derived stem cells (ADSCs) are mesenchymal stem cells that have been proven to have similar characteristics to bone marrow derived stem cells, except that they are much easier to obtain. Within the body, ADSCs act as immunomodulators and assist with the maintenance and repair of tissues. They have been shown to have excellent differentiation capability, making them an extremely viable option for stem cell therapies and regenerative medicine applications. Due to the tissue ADSCs are derived from, they are highly likely to be affected by radiation therapy, especially when treating tumors localized to structures with relatively high ADSC content (eg., breast cancer). For this reason, the purpose behind this research is to better understand how ADSCs are affected by doses of radiation comparable to a single fraction of radiation therapy. We also measured the response of ADSCs to exposure at different dose rates to determine if there is a significant difference in the response of ADSCs to radiation therapy relevant doses of ionizing radiation. Our findings indicate that ADSCs exposed to Cesium (Cs 137)-gamma rays at a moderate dose of 2Gy and either a low dose rate (1.40Gy/min) or a high dose rate (7.31Gy/min) slow proliferation rate, and with cell cycle arrest in some populations. These responses ADSCs were not as marked as previously measured in other stem cell types. In addition, our results indicate that differences in dose rate in the Gy/min range typically utilized in small animal or cell irradiation platforms have a minimal effect on the function of ADSCs. The potential ADSCs have in the space of regenerative medicine makes them an ideal candidate for study with ionizing radiation, as they are one of the main cell types to promote tissue healing.


2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Francesco Da Ros ◽  
Luca Persano ◽  
Dario Bizzotto ◽  
Mariagrazia Michieli ◽  
Paola Braghetta ◽  
...  

Abstract Background Dissection of mechanisms involved in the regulation of bone marrow microenvironment through cell–cell and cell–matrix contacts is essential for the detailed understanding of processes underlying bone marrow activities both under physiological conditions and in hematologic malignancies. Here we describe Emilin-2 as an abundant extracellular matrix component of bone marrow stroma. Methods Immunodetection of Emilin-2 was performed in bone marrow sections of mice from 30 days to 6 months of age. Emilin-2 expression was monitored in vitro in primary and mesenchymal stem cell lines under undifferentiated and adipogenic conditions. Hematopoietic stem cells and progenitors in bone marrow of 3- to 10-month-old wild-type and Emilin-2 null mice were analyzed by flow cytometry. Results Emilin-2 is deposited in bone marrow extracellular matrix in an age-dependent manner, forming a meshwork that extends from compact bone boundaries to the central trabecular regions. Emilin-2 is expressed and secreted by both primary and immortalized bone marrow mesenchymal stem cells, exerting an inhibitory action in adipogenic differentiation. In vivo Emilin-2 deficiency impairs the frequency of hematopoietic stem/progenitor cells in bone marrow during aging. Conclusion Our data provide new insights in the contribution of bone marrow extracellular matrix microenvironment in the regulation of stem cell niches and hematopoietic progenitor differentiation.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Sara Cruciani ◽  
Sara Santaniello ◽  
Angela Fadda ◽  
Luana Sale ◽  
Giorgia Sarais ◽  
...  

Nutraceuticals present in food are molecules able to exert biological activity for the prevention and treatment of various diseases, in form of pharmaceutical preparations, such as capsules, cream, or pills. Myrtus communis L. is a spontaneous Mediterranean evergreen shrub, widely known for the liqueur obtained from its berries rich in phytochemicals such as tannins and flavonoids. In the present study, we aimed to evaluate the properties of myrtle byproducts, residual of the industrial liqueur processing, in Adipose-derived stem cells (ADSCs) induced at oxidative stress by in vitro H2O2 treatment. Cells were exposed for 12-24 and 48h at treatment with extracts and then senescence-induced. ROS production was then determined. The real-time PCR was performed to evaluate the expression of inflammatory cytokines and sirtuin-dependent epigenetic changes, as well the modifications in terms of stem cell pluripotency. The β-galactosidase assay was conducted to analyze stem cell senescence after treatment. Our results show that industrial myrtle byproducts retain a high antioxidant and antisenescence activity, protecting cells from oxidative stress damages. The results obtained suggest that residues from myrtle liqueur production could be used as resource in formulation of food supplements or pharmaceutical preparations with antioxidant, antiaging, and anti-inflammatory activity.


2012 ◽  
pp. 1855-1866
Author(s):  
Alessandro Prigione

Regenerative medicine is a rapidly evolving research field whose main aims are to provide new therapeutic approaches and to repair or replace injured tissues with functional cells derived from stem cells. In the past few years, research breakthroughs have revolutionized the field by showing that all somatic cells have the potential to re-acquire stem cell-like properties. Thus, it appears possible to generate relevant cell types starting from cells easily obtained from affected individuals. The obtained differentiated cells could eventually serve as in vitro tools for the study of disease-associated mechanisms and for performing customized drug screenings. Moreover, in the context of cellular transplantation, these cells represent the ideal cell source given that they posses the same genetic code and thus will avoid the occurrence of unwanted immune reactions. Overall, this revolutionary technique called cellular reprogramming might provide substantial support for the future development of personalized medicine. In this chapter, I describe the recent advances in the field of stem cell-based regenerative medicine applications. Parkinson’s disease is chosen as a paradigmatic example in which the use of stem cells for study and therapy could have a relevant impact and potentially represent a future cure for this debilitating disorder.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
T. J. Moore ◽  
Heidi Abrahamse

The nervous system is essential for normal physiological function of all systems within the human body. Unfortunately the nervous system has a limited capacity for self-repair and there are a plethora of disorders, diseases, and types of trauma that affect the central and peripheral nervous systems; however, current treatment modalities are unable to remedy them. Stem cell therapy using easily accessible mesenchymal stem cells, such as those found in the adipose stroma, has come to the fore in a number of biomedical disciplines as a potential therapeutic regime. In addition to substantial research already having been conducted on thein vitrodifferentiation of stem cells for the treatment of neurological repair, numerous strategies for the induction and culture of stem cells into terminal neural lineages have also been developed. However, none of these strategies have yet been able to produce a fully functional descendent suitable for use in stem cell therapy. Due to the positive effects that low level laser irradiation has shown in stem cell studies to date, we propose that it could enhance the processes involved in the differentiation of adipose derived stem cells into neuronal lineages.


2022 ◽  
Vol 119 (2) ◽  
pp. e2116865118
Author(s):  
Shiv Shah ◽  
Caldon Jayson Esdaille ◽  
Maumita Bhattacharjee ◽  
Ho-Man Kan ◽  
Cato T. Laurencin

Stem cells are of great interest in tissue regeneration due to their ability to modulate the local microenvironment by secreting bioactive factors (collectively, secretome). However, secretome delivery through conditioned media still requires time-consuming cell isolation and maintenance and also may contain factors antagonistic to targeted tissue regeneration. We have therefore engineered a synthetic artificial stem cell (SASC) system which mimics the paracrine effect of the stem cell secretome and provides tailorability of the composition for targeted tissue regeneration. We report the first of many applications of the SASC system we have formulated to treat osteoarthritis (OA). Choosing growth factors important to chondrogenesis and encapsulating respective recombinant proteins in poly (lactic-coglycolic acid) 85:15 (PLGA) we fabricated the SASC system. We compared the antiinflammatory and chondroprotective effects of SASC to that of adipose-derived stem cells (ADSCs) using in vitro interleukin 1B-induced and in vivo collagenase-induced osteoarthritis rodent models. We have designed SASC as an injectable therapy with controlled release of the formulated secretome. In vitro, SASC showed significant antiinflammatory and chondroprotective effects as seen by the up-regulation of SOX9 and reduction of nitric oxide, ADAMTS5, and PRG4 genes compared to ADSCs. In vivo, treatment with SASC and ADSCs significantly attenuated cartilage degeneration and improved the biomechanical properties of the articular cartilage in comparison to OA control. This SASC system demonstrates the feasibility of developing a completely synthetic, tailorable stem cell secretome which reinforces the possibility of developing a new therapeutic strategy that provides better control over targeted tissue engineering applications.


Sign in / Sign up

Export Citation Format

Share Document