scholarly journals Primary energy consumption in selected EU Countries compared to global trends

2021 ◽  
Vol 19 (1) ◽  
pp. 503-510
Author(s):  
Tadeusz Olkuski ◽  
Wojciech Suwała ◽  
Artur Wyrwa ◽  
Janusz Zyśk ◽  
Barbara Tora

Abstract The article shows the consumption of primary energy carriers in selected European Union (EU) countries, including Poland. The trend of consumption of primary energy carriers was compared with the global trend, which is different from that observed in the EU. The consumption of primary energy sources has been increasing steadily for many decades, due to the growth of the world population and the aspirations of developing countries to raise the standard of living of their citizens. In the EU, the opposite trend, i.e., a decrease in primary energy consumption, has been observed since 2007. This article presents tables and graphs showing these phenomena. The authors tried to answer the following questions: (a) What influences the decrease in demand for primary energy in highly developed countries? (b) Why the demand in less-developed countries is constantly growing? The trends in countries, such as Germany, France, the United Kingdom, Italy, and Poland, i.e., countries with the most developed economies in the EU and the home country of the authors, were analyzed.

Ekonomika ◽  
2004 ◽  
Vol 67 ◽  
Author(s):  
Dalia Štreimikienė

The article analyses energy efficiency and energy consumption trends in Lithuania in terms of sustainable development and aims to assess these trends in developed and transition economies. The results of development achieved by EU-15 and other developed countries indicate that the goals of sustainable development such as prosperity, high rates of economic development and low impact on the environment are not conflicting and can be achieved together. Transition economies newly entered the EU and suffering from a high resource intensity of economics and a comparatively low income per capita can converge in terms of the main indicators with EU-15 up to 2020.


2019 ◽  
Vol 108 ◽  
pp. 02014
Author(s):  
Rafał Biały ◽  
Piotr Janusz ◽  
Mariusz Łaciak ◽  
Tadeusz Olkuski ◽  
Mariusz Ruszel ◽  
...  

Over the last decade, developments could be observed in the structure of primary energy consumption in EU countries. In order to achieve the goals, energy carriers with minimum impact on the natural environment are used, and natural gas is considered to be such a fuel. The share of natural gas in the EU’s energy balance in the analysed period, from 2000 to 2016, remained at a relatively stable level. However, in the case of individual countries, its share in the energy balance depends on specific characteristics of a country. Regardless of the share of natural gas in the energy consumption structure of individual countries, they strive to diversify the supply of natural gas. One of the main constituents of natural gas supply diversification is the construction of LNG import terminals. Access to this infrastructure enhances energy security and offers better opportunities when negotiating long-term contracts for the supply of natural gas. The EU possesses significant possibilities of importing natural gas through LNG terminals, but until now they have been used to a limited extent, it may indicate that in addition todiversification tasks, terminals are a guarantee in the event ofinterruptions in gas supplies using gas pipelines.


2012 ◽  
Vol 9 (2) ◽  
pp. 65
Author(s):  
Alhassan Salami Tijani ◽  
Nazri Mohammed ◽  
Werner Witt

Industrial heat pumps are heat-recovery systems that allow the temperature ofwaste-heat stream to be increased to a higher, more efficient temperature. Consequently, heat pumps can improve energy efficiency in industrial processes as well as energy savings when conventional passive-heat recovery is not possible. In this paper, possible ways of saving energy in the chemical industry are considered, the objective is to reduce the primary energy (such as coal) consumption of power plant. Particularly the thermodynamic analyses ofintegrating backpressure turbine ofa power plant with distillation units have been considered. Some practical examples such as conventional distillation unit and heat pump are used as a means of reducing primary energy consumption with tangible indications of energy savings. The heat pump distillation is operated via electrical power from the power plant. The exergy efficiency ofthe primary fuel is calculated for different operating range ofthe heat pump distillation. This is then compared with a conventional distillation unit that depends on saturated steam from a power plant as the source of energy. The results obtained show that heat pump distillation is an economic way to save energy if the temperaturedifference between the overhead and the bottom is small. Based on the result, the energy saved by the application of a heat pump distillation is improved compared to conventional distillation unit.


Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1570
Author(s):  
Tomasz Rokicki ◽  
Aleksandra Perkowska ◽  
Bogdan Klepacki ◽  
Piotr Bórawski ◽  
Aneta Bełdycka-Bórawska ◽  
...  

The paper’s main purpose was to identify and present the current situation and changes in energy consumption in agriculture in the European Union (EU) countries. The specific objectives were the determination of the degree of concentration of energy consumption in agriculture in the EU countries, showing the directions of their changes, types of energy used, and changes in this respect, establishing the correlation between energy consumption and changes in the economic and agricultural situation in the EU countries. All member states of the European Union were deliberately selected for research on 31 December 2018 (28 countries). The research period covered the years 2005–2018. The sources of materials were the literature on the subject, and data from Eurostat. Descriptive, tabular, and graphical methods were used to analyze and present materials, dynamics indicators with a stable base, Gini concentration coefficient, concentration analysis using the Lorenz curve, coefficient of variation, Kendall’s tau correlation coefficient, and Spearman’s rank correlation coefficient. A high concentration of energy consumption in agriculture was found in several EU countries, the largest in countries with the largest agricultural sector, i.e., France and Poland. There were practically no changes in the concentration level. Only in the case of renewable energy, a gradual decrease in concentration was visible. More and more countries developed technologies that allow the use of this type of energy. However, the EU countries differed in terms of the structure of the energy sources used. The majority of the basis was liquid fuels, while stable and gaseous fuels were abandoned in favor of electricity and renewable sources—according to which, in the EU countries, the research hypothesis was confirmed: a gradual diversification of energy sources used in agriculture, with a systematic increase in the importance of renewable energy sources. The second research hypothesis was also confirmed, according to which the increase in the consumption of renewable energy in agriculture is closely related to the economy’s parameters. The use of renewable energy is necessary and results from concern for the natural environment. Therefore, economic factors may have a smaller impact.


Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2538
Author(s):  
Praveen K. Cheekatamarla

Electrical and thermal loads of residential buildings present a unique opportunity for onsite power generation, and concomitant thermal energy generation, storage, and utilization, to decrease primary energy consumption and carbon dioxide intensity. This approach also improves resiliency and ability to address peak load burden effectively. Demand response programs and grid-interactive buildings are also essential to meet the energy needs of the 21st century while addressing climate impact. Given the significance of the scale of building energy consumption, this study investigates how cogeneration systems influence the primary energy consumption and carbon footprint in residential buildings. The impact of onsite power generation capacity, its electrical and thermal efficiency, and its cost, on total primary energy consumption, equivalent carbon dioxide emissions, operating expenditure, and, most importantly, thermal and electrical energy balance, is presented. The conditions at which a cogeneration approach loses its advantage as an energy efficient residential resource are identified as a function of electrical grid’s carbon footprint and primary energy efficiency. Compared to a heat pump heating system with a coefficient of performance (COP) of three, a 0.5 kW cogeneration system with 40% electrical efficiency is shown to lose its environmental benefit if the electrical grid’s carbon dioxide intensity falls below 0.4 kg CO2 per kWh electricity.


2018 ◽  
Vol 882 ◽  
pp. 215-220
Author(s):  
Matthias Koppmann ◽  
Raphael Lechner ◽  
Tom Goßner ◽  
Markus Brautsch

Process cooling and air conditioning are becoming increasingly important in the industry. Refrigeration is still mostly accomplished with compression chillers, although alternative technologies are available on the market that can be more efficient for specific applications. Within the scope of the project “EffiCool” a technology toolbox is currently being developed, which is intended to assist industrials users in selecting energy efficient and eco-friendly cooling solutions. In order to assess different refrigeration options a consistent methodology was developed. The refrigeration technologies are assessed regarding their efficiency, CO2-emissions and primary energy consumption. For CCHP systems an exergetic allocation method was implemented. Two scenarios with A) a compression chiller and B) an absorption chiller coupled to a natural gas CHP system were calculated exemplarily, showing a greater overall efficiency for the CCHP system, although the individual COP of the chiller is considerably lower.


Author(s):  
J Harrod ◽  
P J Mago

Due to the soaring costs and demand of energy in recent years, combined cooling, heating, and power (CCHP) systems have arisen as an alternative to conventional power generation based on their potential to provide reductions in cost, primary energy consumption, and emissions. However, the application of these systems is commonly limited to internal combustion engine prime movers that use natural gas as the primary fuel source. Investigation of more efficient prime movers and renewable fuel applications is an integral part of improving CCHP technology. Therefore, the objective of this study is to analyse the performance of a CCHP system driven by a biomass fired Stirling engine. The study is carried out by considering an hour-by-hour CCHP simulation for a small office building located in Atlanta, Georgia. The hourly thermal and electrical demands for the building were obtained using the EnergyPlus software. Results for burning waste wood chip biomass are compared to results obtained burning natural gas to illustrate the effects of fuel choice and prime mover power output on the overall CCHP system performance. Based on the specified utility rates and including excess production buyback, the results suggest that fuel prices of less than $23/MWh must be maintained for savings in cost compared to the conventional case. In addition, the performance of the CCHP system using the Stirling engine is compared with the conventional system performance. This comparison is based on operational cost and primary energy consumption. When electricity can be sold back to the grid, results indicate that a wood chip fired system yields a potential cost savings of up to 50 per cent and a 20 per cent increase in primary energy consumption as compared with the conventional system. On the other hand, a natural gas fired system is shown to be ineffective for cost and primary energy consumption savings with increases of up to 85 per cent and 24 per cent compared to the conventional case, respectively. The variations in the operational cost and primary energy consumption are also shown to be sensitive to the electricity excess production and buyback rate.


2021 ◽  
Vol 13 (14) ◽  
pp. 7650
Author(s):  
Astrida Miceikienė ◽  
Kristina Gesevičienė ◽  
Daiva Rimkuvienė

The reduction of GHG emissions is one of the priorities of the EU countries. The majority of studies show that financial support and environmental taxes are one of the most effective measures for the mitigation of the negative consequences of climate change. The EU countries employ different environmental support measures and environmental taxes to reduce GHG emissions. There is a shortage of new studies on these measures. The aim of the present study is to compare the effectiveness of the environmental support measures of the EU countries with the effectiveness of environmental taxes in relation to the reduction of GHG emissions. This study is characterized by the broad scope of its data analysis and its systematic approach to the EU’s environmental policy measures. An empirical study was performed for the EU countries with the aim of addressing this research problem and substantiating theoretical insights. A total of 27 EU member states from 2009 to 2018 were selected as research samples. The research is based on a cause-and-effect relationship, where the factors affecting environmental pollution (environmental taxes and subsidies) are the cause, and GHG emissions are the effect. Statistical research methods were used in the empirical study: descriptive statistics, the Shapiro–Wilk test, one-way analysis of variance (ANOVA), simple regression and cluster analysis. The results show that the older member countries of the EU, which had directed the financial measures of environmental policy towards a reduction in energy consumption, managed to achieve a greater reduction in GHG emissions compared to the countries which had not applied those measures. The Central and Eastern European countries are characterized by lower environmental taxes and lower expenditure allocated to environmental protection. The countries with a higher GDP per capita have greater GHG emissions that the countries with lower GDP per capita. This is associated with greater consumption, waste, and energy consumption. The study conducted gives rise to a discussion regarding data sufficiency in the assessment and forecasting of GHG emissions and their environmental consequences.


2018 ◽  
Vol 21 (1) ◽  
pp. 119-133
Author(s):  
Elżbieta Czarny ◽  
Małgorzata Żmuda

Competitiveness of a nation is associated with a set of characteristics that enable structural adjustment to global technological trends, and as a consequence, a rise in the living standard of its citizens. For catching-up economies, GDP convergence towards the most developed economies, constituting their developmental goal, relies upon its ability to shift production and exports structure towards specialization based on knowledge and innovation. Thus, in this paper, competitiveness is evaluated through structural adjustments of exports, and for catching-up economies (the EU–10 states) it may be understood as the ability to close the structural gap to the most developed countries (here: the strongest EU member economy: Germany). We analyse the evolution of the EU–10 nations’ exports specialization in the years 2000 and 2014, checking whether the convergence towards the German exports pattern can be observed, and which of the analysed economies shows the best ability to shift its exports structure towards high-tech specialization. We look additionally at exports structures in 2004 (the year of EU-accession of eight out of 10 countries in the sample) and in 2009 (world trade collapse during the economic crisis). The analysis is based on the Revealed Comparative Advantage (RCA) concept by Balassa (1965). We use the UN Trade Statistics data in the Standard International Trade Classification (SITC), Rev. 4. Commodity groups are classified following the methodology developed by Wysokińska (1997, p. 18).


2005 ◽  
Vol 9 (3) ◽  
pp. 7-14 ◽  
Author(s):  
Hiromi Yamamoto ◽  
Kenji Yamaji

The uses of fossil fuels cause not only the resources exhaustion but also the environmental problems such as global warming. The purposes of this study are to evaluate paths to ward sustainable energy systems and roles of each renewable. In order to realize the purposes, the authors developed the global land use and energy model that figured the global energy supply systems in the future considering the cost minimization. Using the model the authors conducted a simulation in C30R scenario, which is a kind of strict CO2 emission limit scenarios and reduced CO2 emissions by 30% compared with Kyoto protocol forever scenario, and obtained the following results. In C30R scenario bio energy will supply 33% of all the primary energy consumption. How ever, wind and photo voltaic will supply 1.8% and 1.4% of all the primary energy consumption, respectively, because of the limits of power grid stability. The results imply that the strict limits of CO2 emissions are not sufficient to achieve the complete renewable energy systems. In order to use wind and photo voltaic as major energy resources we need not only to reduce the plant costs but also to develop unconventional renewable technologies. .


Sign in / Sign up

Export Citation Format

Share Document