Investigation on the application properties of epoxy resin and glass fiber in RTV mold rubber

e-Polymers ◽  
2016 ◽  
Vol 16 (6) ◽  
pp. 437-445 ◽  
Author(s):  
Yang Siyuan ◽  
Wang Jincheng ◽  
Wang Junhua

AbstractIn this work, epoxy resin (EP), glass fiber (GF), and modified GF (MGF) were used in the modification of room-temperature-vulcanizated (RTV) silicone rubber, and their properties were investigated and characterized. The properties such as tensile strength, elongation at break, dimensional stability, and thermal stability were studied. Results revealed that RTV/EP-3/MGF-3 exhibited the best tensile properties. Meantime, the dimensional stability of these composites was improved in a certain degree. Thermogravimetric (TG) analysis, X-ray diffraction (XRD), scanning electron microscope (SEM), and differential scanning calometry (DSC) were also used in the investigation of the microtopography, structure and properties of these RTV mold rubbers.

2002 ◽  
Vol 16 (06n07) ◽  
pp. 1047-1051
Author(s):  
JIANPING MA ◽  
ZHIMING CHEN ◽  
GANG LU ◽  
MINGBIN YU ◽  
LIANMAO HANG ◽  
...  

Intense photoluminescence (PL) has been observed at room temperature from the polycrystalline SiC samples prepared from carbon-saturated Si melt at a temperature ranging from 1500 to 1650°C. Composition and structure of the samples have been confirmed by means of X-ray photoelectron spectroscopy, X-ray diffraction and scanning electron microscopy. PL measurements with 325 nm UV light excitation revealed that the room temperature PL spectrum of the samples consists of 3 luminescent bands, the peak energies of which are 2.38 eV, 2.77 eV and 3.06 eV, respectively. The 2.38 eV band is much stronger than the others. It is suggested that some extrinsic PL mechanisms associated with defect or interface states would be responsible to the intensive PL observed at room temperature.


2013 ◽  
Vol 634-638 ◽  
pp. 2358-2361
Author(s):  
Jun Cong Wei ◽  
Li Rong Yang

The effects of Si3N4 addition on the room temperature physical properties and thermal shock resistance properties of corundum based refractory castables were investigated using brown corundum, white corundum and alumina micropowder as the starting materials and pure calcium aluminate as a binder. The phase composition, microstructure, mechanical properties of corundum based castables were investigated by means of X-ray diffraction (XRD) and scanning electron microscopy (SEM). The results showed that as the increase in Si3N4 addition, the bulk density decreased and apparent porosity increased, the cold strength deduced. However, the residual strength rate increased. That is, the thermal shock resistance was improved. This is because even though the introduction of Si3N4 inhibited the sintering of material and deduced the compactness, microcracks were produced in the materials due to a difference in thermal expansion coefficient. So the thermal shock resistance of corundum based castable was improved.


2019 ◽  
Vol 33 (03) ◽  
pp. 1950027 ◽  
Author(s):  
Jiaxiang Chen ◽  
Xiaopeng Jia ◽  
Yuewen Zhang ◽  
Haiqiang Liu ◽  
Baomin Liu ◽  
...  

The polycrystalline skutterudite [Formula: see text] were successfully synthesized from 1.5 GPa to 3.5 GPa by the high pressure and high temperature (HPHT) method. Negative Seebeck coefficient confirmed the n-type conductivity of all samples. The phase compositions of samples were investigated by X-ray diffraction (XRD) and the microstructures were observed by scanning electron microscopy (SEM). It was found that the grains appeared smaller and the grain boundaries became more abundant when pressures were higher. We measured the electrical properties from room temperature to 723 K. Both the electrical resistivity and absolute value of Seebeck coefficient increase with the increasing synthetic pressure. At 723 K, the maximum power factor of [Formula: see text] was obtained for the sample synthesized under 3 GPa. The maximum ZT value of 0.61 was reached by [Formula: see text] synthesized under 3 GPa and measured at 723 K.


Author(s):  
Brijesh Pare ◽  
Satish Piplode ◽  
Vaishali Joshi

Flower like bismuth oxy chloride (BiOCl) was successfully synthesized by a simple hydrolytic method at room temperature. The precursor and as-prepared samples were characterized by X-ray diffraction (XRD), High Resolution Field Emission Scanning Electron Microscope (HR FESEM). The results indicated that the as-prepared BiOCl sample is self-assembled hierarchically with nano sheets. The photocatalytic activity of BiOCl was tested on the degradation of the Oxamyl (OM) under solar light irradiation. The results showed that pesticide molecules could be efficiently degraded over BiOCl under solar light irradiation. All the experiment were carried out in the following reaction condition, [OM] = 10-4 mol dm-3, BiOCl NPs= 40mg/50ml, pH= 6.3. Effect of operational parameter such as concentration of H2O2, K2S2O8, FeCl3, Fenton’s reagent (Fe3+/H2O2) and N2, O2 purging on the photocatalytic degradation was observed.


2012 ◽  
Vol 1444 ◽  
Author(s):  
Robert M. Harker ◽  
Afiya H. Chohollo

ABSTRACTIdentical samples of uranium coupons were prepared and each exposed to hydrogen for different times (where this time is significantly less than a classically understood ‘induction time’). Samples were prepared from rolled depleted uranium stock: as-received oxide was removed on all surfaces and two faces (~12x12 mm) were polished to a sub-micron standard. Samples were individually taken through a Vacuum Thermal Pre-Treatment cycle from room temperature to 200°C to the reaction temperature (80°C) over 40 hours and subsequently exposed to 10 mbar O2 for 24 hours. After O2 was removed, the samples were exposed to hydrogen for pre-determined times of up to 48 minutes. Examination of the samples by Scanning Electron Microscopy (SEM) has, as expected, identified small features protruding from the surface believed to have been caused by sub-surface precipitation of UH3. In general these features are circular and isolated from each other, have a diameter of less than 3μm and appear as either ‘flat-topped’ or ‘domed’ morphology. In addition, longer time exposure samples show a predominance of ‘area attack’ where coalesced sub-surface precipitation appears to be confined to particular metal grains. X-Ray Diffraction (XRD) data show an increase in the quantity of UH3 with time.


2016 ◽  
Vol 859 ◽  
pp. 18-23 ◽  
Author(s):  
Li Ping Zhao ◽  
Wen Hong Tao ◽  
Xing Hua Fu ◽  
Wen Zhe Cao ◽  
Guo Yuan Cheng ◽  
...  

(Ba0.5Sr0.5)1-xMnxTiO3(x=0,0.01,0.03,0.05)ceramics were prepared via a new sol-gel method with titannium oxide, strontium nitrate, barium nitrate and manganous nitrate as raw materials.The effect of Mn doping on the microstructure and dielectric properties of the BST were characterized by field scanning electron microscopy,x-ray diffraction and impedance analyser.It was found that the dopted ions could not alter the basic crystal strcuture and they only improved the material properties as modified ions when x≤0.3.The (Ba0.5Sr0.5)1-xMnxTiO3 ceramics sintered at 1250°C for 2h exhibited good dielectric properties(er=1330,tand=0.03)at room temperature and f=1KHz when x=0.03 and the grains were regular and uniform ,indicating a dense microstrcture.


2004 ◽  
Vol 848 ◽  
Author(s):  
Olivier Durupthy ◽  
Saïd Es-salhi ◽  
Nathalie Steunou ◽  
Thibaud Coradin ◽  
Jacques Livage

ABSTRACTVarious cations (Li+, Na+, K+, NH4+, Cs+, Mg2+, Ca2+, Ba2+) were introduced during the formation of a V2O5. nH2O gel. Cation intercalated Xy V2O5. nH2O (y = 0.3 for X = Li+, Na+, K+, NH4+ or y = 0.15 for Mg2+, Ca2+, Ba2+) were first obtained at room temperature but some of them evolve upon ageing into a new phase: XV3O8. nH2O for X = Na+, K+, NH4+ and Cs+ or XV6O16. nH2O for X = Mg2+, Ca2+, Ba2+. All the vanadium oxide phases were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and infrared spectroscopy (IR); the supernatant solutions were analysed by 51V NMR spectroscopy. These vanadium oxide phases exhibit a layered structure with cations and water molecules intercalated within the interlayer space. The formation of the different phases depends mainly on the pH of the supernatant solution and on the nature of the cation.


2017 ◽  
Vol 2017 ◽  
pp. 1-4 ◽  
Author(s):  
Swati Arora ◽  
Vivek Jaimini ◽  
Subodh Srivastava ◽  
Y. K. Vijay

Bismuth telluride has high thermoelectric performance at room temperature; in present work, various nanostructure thin films of bismuth telluride were fabricated on silicon substrates at room temperature using thermal evaporation method. Tellurium (Te) and bismuth (Bi) were deposited on silicon substrate in different ratio of thickness. These films were annealed at 50°C and 100°C. After heat treatment, the thin films attained the semiconductor nature. Samples were studied by X-ray diffraction (XRD) and scanning electron microscopy (SEM) to show granular growth.


NANO ◽  
2016 ◽  
Vol 11 (07) ◽  
pp. 1650079 ◽  
Author(s):  
Wenjun Yan ◽  
Ming Hu ◽  
Jiran Liang ◽  
Dengfeng Wang ◽  
Yulong Wei ◽  
...  

A novel composite of Au-functionalized porous silicon (PS)/V2O5 nanorods (PS/V2O5:Au) was prepared to detect NO2 gas. PS/V2O5 nanorods were synthesized by a heating process of pure vanadium film on PS, and then the obtained PS/V2O5 nanorods were functionalized with dispersed Au nanoparticles. Various analytical techniques, such as field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), have been employed to investigate the properties of PS/V2O5:Au. Herein, the PS/V2O5:Au sample exhibited improved NO2-sensing performances in response, stability and selectivity at room temperature (25[Formula: see text]C), compared with the pure PS/V2O5 nanorods. These phenomena were closely related to not only the dispersed Au nanoparticles acting as a catalyst but also the p-n heterojunctions between PS and V2O5 nanorods. Whereas, more Au nanoparticles suppressed the improvement of response to NO2 gas.


2013 ◽  
Vol 785-786 ◽  
pp. 918-923 ◽  
Author(s):  
Lin Huang ◽  
Xue Nian Lin ◽  
Ren Wu Chen ◽  
Jiang Yong Wang

The Sn whisker growth in Cu(top)-Sn(bottom) bilayer system upon room temperature aging was investigated by scanning electron microscope and X-ray diffraction techniques. The experimental observations indicate that the Sn whisker growth on the Cu surface in Cu-Sn bilayer system is different from that on the Sn surface in Sn-Cu bilayer system. When the Sn sublayer thickness is less than 0.5μm, the Sn whisker growth can take place in Cu-Sn system but not in Sn-Cu system. An explanation for Sn whisker growth in Cu-Sn bilayer system is given.


Sign in / Sign up

Export Citation Format

Share Document